

KING COUNTY

1200 King County Courthouse 516 Third Avenue Seattle, WA 98104

Signature Report

Motion 15694

	Proposed No. 2020-0278.1 Sponsors Lambert
1	A MOTION acknowledging receipt of a report on the
2	management of biosolids, including a description and
3	evaluation of alternative options for the use of biosolids
4	prepared in accordance with the 2019-2020 Biennial
5	Budget Ordinance, Ordinance 18835, Section 108, as
6	amended by Ordinance 18930, Section 72, Proviso P3.
7	WHEREAS, the King County 2019-2020 Biennial Budget Ordinance, Ordinance
8	18835, Section 108, as amended by Ordinance 18930, Section 72, Proviso P3, states that
9	\$100,000 shall not be expended or encumbered until the executive transmits a report on
10	the management of biosolids generated in the processing of wastewater at county
11	facilities, and a motion that acknowledges receipt of the report and the motion is passed
12	by the council, and
13	WHEREAS, the executive has transmitted to the council the requested report
14	entitled Alternative Options for the Use of Biosolids along with a motion acknowledging
15	the receipt thereof by June 1, 2020;
16	NOW, THEREFORE, BE IT MOVED by the Council of King County:
17	Receipt of the report addressing the management of biosolids, including a

1

Motion 15694

- 18 description and evaluation of alternative options for the use of biosolids, Attachment A to
- 19 this motion, is hereby acknowledged.

20

Motion 15694 was introduced on 9/1/2020 and passed by the Metropolitan King County Council on 10/27/2020, by the following vote:

Yes: 9 - Ms. Balducci, Mr. Dembowski, Mr. Dunn, Ms. Kohl-Welles, Ms. Lambert, Mr. McDermott, Mr. Upthegrove, Mr. von Reichbauer and Mr. Zahilay

KING COUNTY COUNCIL KING COUNTY, WASHINGTON

DocuSigned by: Ilandia Balducci -7F1C273CF9994B6

Claudia Balducci, Chair

ATTEST:

-DocuSigned by Melani Ledro 8DE1BB375AD3422...

Melani Pedroza, Clerk of the Council

Attachments: A. Alternative Options for the Use of Biosolids August 1, 2020

Motion 15694

Attachment A

Alternative Options for the Use of Biosolids

August 1, 2020

Contents

Provis	o Text	3
Execu	itive Summary	4
Backg	Jround	7
Repor	t Requirements	9
Α.	Construction of a Local Facility	13
В.	Costs and Benefits	14
C.	Physical Footprint	18
D.	Storage Volume	19
E.	Map of Biosolids Applications	20
F.	Financial Analysis	21
	usion	
Apper	ndices	23

Tables

Table 1: Total Costs and Scores	6
Table 2: Types of Costs and Benefits	14
Table 3: Summary of Escalated Capital Cost	
Table 4: Summary of 2050 Annual Operations and Maintenance and Revenues	
Table 5: Summary of 2050 Annual Transportation Costs	17
Table 6: Physical Footprint (Land) Required	
Table 7: Total Costs and Scores	

Figures

Figure 1: Depiction of the Baseline: Class B, Existing Program	9
Figure 2: Depiction of Alternative Option One: 100 Percent Class A	12
Figure 3: Depiction of Alternative Option Two: Pyrolysis	13
Figure 4: Annual Carbon Credits and Debits	18
Figure 5: Mapped Locations of Current Land Application of Biosolids	21

Proviso Text

Ordinance 18930, Section 72, Proviso P3¹

P3 PROVIDED FURTHER THAT:

Of this appropriation, \$100,000 shall not be expended or encumbered until the executive transmits a report on the management of biosolids generated in the processing of wastewater at county facilities and a motion that acknowledges receipt of the report, and a motion acknowledging receipt is passed by the council. The motion should reference the subject matter, the proviso's ordinance, ordinance section, and proviso number in both the title and body of the motion.

The primary existing biosolids processing strategy utilized by the county emphasizes the land application of biosolids generated by the wastewater treatment process at county facilities ("biosolids") in forest and farm environments. The report shall describe and evaluate alternative options for the use of those biosolids. The report should also address alternative biosolids management approaches that may lead to an expansion or diversification of the markets for those biosolids.

The report shall include, but not be limited to:

A. As an alternative option to be evaluated, the construction of a local biosolids facility that could generate by-products to include gas, electricity, Class A soil enhancer/amendment or for other productive uses;

B. To compare the costs and benefits of the alternative options to the existing strategy a financial analysis comparing the alternative options to the existing strategy, including the transportation costs of the existing strategy;

C. The size of the physical footprint needed for a biosolids facility sited locally, at which those biosolids could be further refined into marketable by-products, including gas, electricity and Class A soil enhancer or amendment;

D. The volume of storage capacity required to store biosolids under the existing biosolids strategy and projected future storage capacity requirements. To the extent that under the existing biosolids strategy involves storage, the study shall also describe: (1) the volume of the storage; and (2) the proportion of total storage capacity that is being reached, described as peak storage levels over the past year;

E. The mapped locations of current land application of biosolids; and

F. A financial analysis of a strategy to transition all or a portion of the current production of biosolids to Class A biosolids, including discussion of the financial viability of the transition.

The executive should file the report and a motion required by this proviso by June 1, 2020², in the form of a paper original and an electronic copy with the clerk of the council, who shall retain the original and provide an electronic copy to all councilmembers, the council chief of staff and the lead staff for the regional water quality committee and the committee of the whole, or their successors.

¹ Link to Ordinance 18930

² Due COVID 19, the King County Council passed Motion 15620, which extends due dates on reports by 60 days.

Executive Summary

Background

This report examines alternative options for the King County Loop Biosolids Program³ in accordance with <u>Ordinance 18930, Section 72, Proviso P3</u>. The information in this report is based on a technical study completed in 2020 by the consultant <u>Brown and Caldwell⁴</u>, which is attached as Appendix A, as well as an extensive number of other relevant King County studies on Class A options. Analyses provided in this report are informed by current operational and capital costs, King County strategic objectives, and environmental and wastewater treatment process information for King County's three regional treatment plants: West Point, South Plant, and Brightwater.

The mission of the Wastewater Treatment Division (WTD) of the Department of Natural Resources and Parks (DNRP) is to protect public health and enhance the environment by collecting and treating wastewater while recycling valuable resources for the Puget Sound region. The <u>Biosolids Program</u>, housed within the WTD's Resource Recovery section, manages the distribution and use of, the biosolids product created by recycling King County's wastewater, which is called <u>Loop</u>.

Regulations established two types of biosolids: Class A and Class B. Class A biosolids have virtually no detectable pathogens and can be used by the public for activities such as landscaping and gardening. Class B biosolids are treated, but do have detectable levels of pathogens and require a permit for use for in activities such as agriculture and forestry.

Since 1984, King County has beneficially used 100 percent of its Loop biosolids, a Class B product, as a fertilizer replacement and soil amendment, primarily in forestry and agriculture. Loop biosolids return valuable carbon and nutrients back to the soil and help King County fight climate change. However, with fluctuations in forestry application and the May 2020 business closure of the County's Biosolids Program's compost partner, GroCo Inc., the market resiliency of the Biosolids Program has decreased. In recent years, over 75-80 percent of Loop biosolids went to agricultural use in eastern Washington. GroCo Inc. used one percent of King County's Loop biosolids to create its Class A compost product locally. While one percent is small, the Class A GroCo Inc. compost product made with Loop was the only publicly accessible product for King County residents and gardeners.

The current DNRP Biosolids Program, which produces a Class B product, complies with regulations and policies on federal, state, and County levels, under the <u>Clean Water Act Part 503</u>, <u>Washington</u> <u>Administrative Code Chapter 173-308</u>, and <u>King County Code 28.86.090</u> Biosolids Policies, respectively. King County could transition from producing a 100 percent Class B product at its treatment plants to the production of Class A biosolids in the future through either treatment plant upgrades or a construction of a composting facility.

³ The term "biosolids" refers to the solid organic matter recovered from the wastewater treatment process that can be used as a soil amendment or enhancement. Loop is the brand name of the biosolids produced at King County's three wastewater treatment plants.

⁴ The report from Brown and Caldwell is attached as Appendix A

Report Requirements

DNRP contracted with Brown and Caldwell to research Class A alternative options for this proviso response. The resulting report is attached as Appendix A. Each option analyzed assumes the use of 100 percent of King County's biosolids to enable comparison of costs and benefits with the existing Class B Biosolids Program. The report details the estimated cost and benefits of maintaining the existing Class B program as a baseline and two alternative options projected out to the year 2050. The options are:

- *Baseline: Class B* Continuation of the existing Class B Biosolids Program, including necessary upgrades to address future treatment capacity needs and maintain the treatment system that produces biosolids.
- Alternative Option One: Class A This option includes Class A digestion at the treatment plants paired with a soil blending facility⁵, as well as composting⁶ Class B biosolids into a Class A compost, thereby transitioning to a 100 percent Class A biosolids program by leveraging different technologies.
- Alternative Option Two: Pyrolysis This option would involve the creation of a public-private partnership to dry and pyrolyze⁷ Class B biosolids into biochar⁸ at a new offsite pyrolysis facility. It should be noted that biochar may only be considered Class A biosolids under the state biosolids rule <u>WAC 173-308</u> on a case by case basis. However, a pyrolysis option was included to show the costs and benefits of an emerging technology and a different programmatic direction.

Construction of a Local Facility

The *Baseline: Class B* option assumes that all changes would take place on the sites of the regional treatment plants. Both *Alternative Option One: 100 Percent Class A* and *Alternative Option Two: Pyrolysis* would require the construction of offsite local facilities, outside of the treatment plant footprints. In *Alternative Option One: 100 Percent Class A*, it would be necessary to site, permit, and construct a soil blending and composting facility. To accomplish *Alternative Option Two: Pyrolysis*, King County would need to site, permit, and construct a drying and pyrolysis facility.

Costs and Benefits

The alternative options were compared on a variety of factors including capital and operating costs, transportation costs, environmental impacts, equity and social justice factors, technical and

⁵ Digestion refers to the process in which microorganisms break down biodegradable material, like solids in wastewater. When it is done in the absence of oxygen it is called anaerobic digestion. Class A digestion creates biosolids that meet United States Environmental Protection Agency standards by operating at a temperature of 122°F to 140°F, called thermophilic temperatures, in order to reduce pathogens to the level required for Class A biosolids. In order to make a marketable product, Class A digestion can be combined with soil blending, which involves mixing Class A biosolids with sand and woody materials, such as bark and sawdust, to create blends that can be used as potting mix or topsoil.

⁶ Composting is an aerobic biological process that uses microorganisms in the presence of air to decompose organic material and to produce heat to reduce pathogens to Class A requirements. Composting biosolids involves mixing Class B biosolids with woody materials and composting them.

⁷ Pyrolysis is a decomposition process that occurs at temperatures in excess of 572°F in the absence of air. The process produces a charcoal-like soil amendment called biochar.

⁸ Biochar is a charcoal-like soil amendment.

implementation difficulty, and synergy with King County objectives and WTD priorities. Table 1 shows a summary of the results.

Table 1. Total Costs and Scores				
	Baseline: Class B	Alternative Option One: 100 Percent Class A	Alternative Option Two: Pyrolysis	
Escalated Capital Costs	\$335,000,000	\$590,000,000	\$1,115,000,000	
2050 Operating & Maintenance Costs	\$40,500,000	\$49,000,000	\$39,000,000	
2050 Annual Transportation Costs	\$6,000,000	\$4,000,000	\$1,500,000	
2050 Annual Revenue	\$11,100,000	\$19,500,000	\$10,500,000	
2050 Annual Net Operating & Maintenance Costs and Minus Revenue	\$29,400,000	\$29,500,000	\$28,500,000	
Triple Bottom Line Score ⁹	High	Very High	Medium	
Table 1: Total Costs and Scores				

Table 1: Total Costs and Scores

Physical Footprint

All physical site requirements used in this analysis are approximate. Actual site requirements would be refined further based on selected technology and actual site constraints, during WTD's capital project delivery process. The physical footprint required is 30-40 acres for an offsite soil blending and compost facility in *Alternative Option One: 100 Percent Class A* and 12 acres for an offsite pyrolysis facility in *Alternative Option Two: Pyrolysis*. The *Baseline Class B* does not require an offsite facility.

Storage Requirements and Mapped Locations of Current Land Application

The current biosolids program is designed to transfer biosolids from the treatment plants directly to land application sites for use as soon as the biosolids are fully treated. Biosolids are temporarily stored in emergency situations when it is not possible to haul biosolids and/or land apply in either eastern or western Washington due to inclement weather and mountain pass closure. WTD contracts with the City of Everett Wastewater Treatment Plant to store biosolids at the facility during these weather events and typically uses less than half of the available space during peak storage times. A map of the locations where biosolids are land applied for agriculture or forestry uses is included.

Financial Analysis

Analyses find that all identified options are costly, ranging from \$335 million to \$1.1 billion in capital investments, and face a number of technical and physical challenges, such as footprint constraints, permitting challenges, and the implementation of new technologies. See Section B in this report for details. Development of a Class A program is encouraged by state and federal statute, but would require changes in the King County Code to align the code with state law, thus enabling King County to produce Class A or Class B biosolids.

⁹ For more information on Triple Bottom Line, see Appendix B.

Conclusion

This report finds that opportunities exist for King County to explore transition to Class A biosolids as a long-term, phased approach over many decades. Transitioning to Class A could be incorporated into planning efforts for improvements to the County's regional treatment plants to address capacity needs, asset management (i.e., repair, refurbishment or replacement of aging equipment), and other physical plant needs and County goals.

Any development of a Class A program would require changes to biosolids policies in King County Code, since the King County Code currently prohibits the production and sale of anything other than Class B Biosolids.¹⁰ WTD is currently in the process of designing a small-scale temporary compost pilot project at South Treatment Plant to test composting and explore marketability of a County-owned Class A compost. The current cost estimate for the pilot project is \$3.4 million with project completion anticipated in 2022/2023. This work in developing the pilot project to produce Class A compost at South Treatment Plant could help inform future planning efforts.

Background

Department Overview: The Department of Natural Resources and Parks (DNRP) works in support of sustainable and livable communities and a clean and healthy natural environment. Its mission is to foster environmental stewardship and strengthen communities by providing regional parks, protecting the region's water, air, land, and natural habitats, and reducing, safely disposing of, and creating resources from wastewater and solid waste.

The Wastewater Treatment Division (WTD) of DNRP protects public health and enhances the environment by collecting and treating wastewater while recycling valuable resources for the Puget Sound region. The King County Biosolids Program is housed within the Resource Recovery Section of WTD.

The Resource Recovery Section manages the administration and delivery of products and programs from renewable resources ¹¹ captured from the wastewater treatment process. The Resource Recovery Section is comprised of a strategic support team and five programs: Sustainability, Technology Assessment and Innovation, Energy, Recycled Water, and Biosolids. The Biosolids Program manages the distribution and use of Loop, a branded biosolids product created by recycling the County's wastewater. Loop is a natural soil builder and endlessly renewable resource that has been returning carbon and nutrients to the land for almost 50 years.

Key Historical Conditions: Since its inception, the King County Biosolids Program has taken a marketbased approach to biosolids management, focusing on creating high quality marketable products, and developing strong customer relationships. The Biosolids Program has successfully produced and distributed its biosolids for almost 50 years with full regulatory compliance and beneficial use.

¹⁰ King County Code 28.86.090 Biosolids policies (BP).

¹¹ A renewable resource is a <u>natural resource</u> which will replenish to replace the portion <u>depleted</u> by usage and consumption. Biogas, biosolids, and recycled water are three byproducts of the wastewater system that are considered renewable resources.

The Biosolids Program, in conjunction with University of Washington scientists, began researching and developing a program in 1972 for biosolids to be used on forestlands and land that needed to be reclaimed from other uses such as mining. In 1978, the Biosolids Program entered a long-standing partnership with GroCo, Inc. to compost a portion of its biosolids into a retail garden product. After nearly two decades of operations, the Biosolids Program added two agricultural projects in Yakima and Douglas Counties.

In 1993, federal biosolids regulations were added to <u>The Clean Water Act of 1972 (CWA)</u> and <u>40 CFR Part</u> <u>503</u> of the CWA established standards, which consist of general requirements, pollutant limits, management practices, and operational standards, for the final use of biosolids generated during the treatment of domestic sewage. Washington State followed suit, developing the <u>biosolids rule, or chapter</u> <u>173-308</u> in the <u>Washington Administrative Code (WAC)</u> in 1998. It is important to note that the biosolids rule established the requirement for beneficial use of biosolids that "encourages the maximum beneficial use of biosolids" and "recognizes biosolids as a valuable commodity." The biosolids rule incorporates all the legal requirements. Regulations established two types of biosolids: Class A and Class B. Class A biosolids have virtually no detectable pathogens and can be used without a permit. King County produces Class B biosolids, which are treated, but do have detectable levels of pathogens and require a permit for use.

In addition to developing a successful Class B program, the Biosolids Program examined opportunities for Class A options many times over the past several decades. Class A options have not been undertaken due to prioritizing other operational and infrastructure needs.

Key Current Conditions: King County currently produces approximately 130,000 wet tons of biosolids each year at three regional treatment plants, which is equivalent to filling a stadium 70 feet high or filling 8,000 Metro buses. Each of King County's treatment plants is slightly different, but all use a technology called anaerobic digestion, which is a large heated tank where microorganisms break down the solids, similar to how a human stomach digests food. King County uses 100 percent of the Class B Loop biosolids produced at the County's wastewater treatment plants in a beneficial way on land, primarily as a fertilizer replacement in forestry and agriculture as shown below in Figure 1. However, with fluctuations in forestry use over the past decade, the program became more reliant on agricultural uses, reducing options for the Biosolids Program if biosolids use in agriculture declines.

Farmers in Douglas and Yakima Counties currently use most (80-85 percent) of King County's biosolids. In May 2020, the Biosolids Program's compost partner GroCo Inc., which used one percent of King County's Loop product as an ingredient to produce a retail garden product called GroCo compost, closed its business. Composting involves mixing biosolids with woody material, such as sawdust, yard clippings, or wood chips, and then microorganisms break down the material into a garden product called compost. While one percent is a small amount and King County did not own the final product, GroCo compost made with Loop was the only publicly accessible product for use by King County residents and gardeners. Other composters in the region are already nearing capacity, meaning they cannot accept more biosolids for use in compost, and have not shown interest in partnering with DNRP.

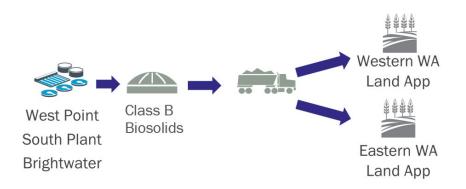


Figure 1: Depiction of the Baseline: Class B, Existing Program

King County's Biosolids Program also plays a key role in accomplishing the goals of the <u>Clean Water</u> <u>Healthy Habitat</u> initiative and the <u>Strategic Climate Action Plan</u>, primarily through carbon sequestration from land application.¹² In 2019, Loop biosolids use provided 20 percent of the carbon offsets for DNRP's carbon footprint.¹³ Energy capture and reuse from the anaerobic digesters¹⁴ at King County's wastewater treatment plants allow WTD to operate in a more energy efficient manner. In addition, DNRP's partnership with GroCo Inc. for Class A biosolids allowed DNRP to participate in King County's <u>Equity and Social Justice Initiatives</u> by supporting community gardens in underserved areas with compost donations and by maintaining a robust and far-reaching outreach and education program.

Report Methodology: DNRP contracted the consulting firm of Brown and Caldwell to assist WTD with research for this report. DNRP staff from operations, finance, community services, resource recovery, engineering, and planning participated in the development of this report. Building on the foundation of previous Class A evaluations, the consultants referred to past reports and conducted additional research. Environmental and treatment process information was modeled to compare differences between options. DNRP staff and the consultants participated in a workshop to review and adjust the model, and assumptions, and reach consensus on the Triple Bottom Line¹⁵ analysis provided in Appendix B to this document. The consultant technical memorandum/report is attached as Appendix A.

Report Requirements

Taking into account federal, state, and local biosolids regulations and policies, current and future wastewater treatment plant capacity, and the strategic environmental and social objectives of King County, the following report details potential Class A options for the County's Biosolids Program. The report requires the following:

¹² Carbon Sequestration refers to the process of removing carbon dioxide from the atmosphere.

¹³ Carbon Offsets refer to actions take to compensate for carbon dioxide emissions. Offsets can be traded as part of environmental programs.

¹⁴ Some wastewater treatment plants use anaerobic digesters to provide an oxygen-free environment for microorganisms to break down organic matter in wastewater. The anaerobic digestion process produces wastewater digester gas, a methane-rich byproduct that can be used as an energy source.

¹⁵ The Triple Bottom Line is an analysis method to account for environmental, economic, and social factors, and is commonly used in planning or feasibility studies to evaluate King County alternatives, options, and projects.

A. As an alternative option to be evaluated, the construction of a local biosolids facility that could generate by-products to include gas, electricity, Class A soil enhancer/amendment or for other productive uses;

B. To compare the costs and benefits of the alternative options to the existing strategy a financial analysis comparing the alternative options to the existing strategy, including the transportation costs of the existing strategy;

C. The size of the physical footprint needed for a biosolids facility sited locally, at which those biosolids could be further refined into marketable by-products, including gas, electricity and Class A soil enhancer or amendment;

D. The volume of storage capacity required to store biosolids under the existing biosolids strategy and projected future storage capacity requirements. To the extent that under the existing biosolids strategy involves storage, the study shall also describe: (1) the volume of the storage; and (2) the proportion of total storage capacity that is being reached, described as peak storage levels over the past year;

E. Mapped Locations of Current Land Application of Biosolids; and

F. A financial analysis of a strategy to transition all or a portion of the current production of biosolids to Class A biosolids, including discussion of the financial viability of the transition.

Overview

In order to develop alternative options to the current Class B program, various biosolids processing technologies were explored in detail and assessed on several criteria. A detailed explanation of criteria and assessment process can be found in Appendix A.¹⁶ After assessment, favorable technologies were developed into alternative options and compared to the baseline Class B program, all projected out to the year 2050. The options compared in the report are as follows:

Baseline: Class B Program

This option consists of continuing the 100 percent Class B biosolids program at King County's three regional treatment plants, focusing on land application in western Washington forestry and eastern Washington agriculture.

As the region's population continues to grow, King County must maintain sufficient solids treatment capacity at its regional treatment plants.¹⁷ King County currently produces approximately 130,000 wet tons of biosolids each year, and each treatment plant has unique operating processes and constraints. Even though this option continues the existing program, using the existing technology, investments will still be needed to maintain the equipment (i.e. digesters) that produce Class B biosolids to handle increasing solids treatment capacity needs through 2050. Therefore, investments are assumed in this option just to continue the existing Class B biosolids program while meeting solids treatment capacity needs through 2050.

Alternative Option One: 100 Percent Class A

¹⁶ See Table 1 on page 4 of Technical Memorandum in Appendix A.

¹⁷ The assumed projects are high-level concepts developed to support this study. Capital projects to expand solids treatment capacity have not yet been determined through WTD planning or capital project delivery processes.

This option includes Class A digestion at the treatment plants paired with a soil blending facility¹⁸, as well as composting¹⁹ Class B biosolids into a Class A compost, thereby transitioning to a 100 percent Class A biosolids program by leveraging different technologies. Combining these two technologies is necessary due to the large volume of biosolids produced by King County; it is not feasible to compost all of King County's biosolids²⁰, but including composting provides valuable product and market diversity that could reduce the cost of transitioning to a 100 percent Class A program through revenue from product sales. Since this option is a combination of different technologies and facilities, informed by the unique constraints of each treatment plant, it also allows the flexibility of potentially phasing investments over time.

This option, shown in Figure 2, includes the upgrade of digester equipment at two regional treatment plants to produce Class A biosolids and the construction of an offsite soil blending and composting facility. The Class A biosolids produced at one of these treatment plants would be transported to the offsite compost and soil blending facility to create a marketable soil blend for retail sale to the public, or used directly by local commercial customers. The Class A biosolids produced at the other treatment plant would be delivered directly to agriculture and forestry land application sites in western and eastern Washington. The Class B biosolids produced at the third regional treatment plant would be transported to the composting and soil blending facility to be composted into a Class A garden product (compost) for retail sale.

Notably, the option outlined below and the technology selected for each treatment plant is just one example of how a combination of technologies and strategies could be deployed to achieve a Class A biosolids option. It should also be noted that this option would require changes to biosolids policies in King County Code to allow the production and sale of Class A biosolids.²¹

¹⁸ Digestion refers to the process in which microorganisms break down biodegradable material, like solids in wastewater. When it is done in the absence of oxygen it is called anaerobic digestion. Class A digestion creates biosolids that meet United States Environmental Protection Agency standards by operating at a temperature of 122°F to 140°F, called thermophilic temperatures, in order to reduce pathogens to the level required for Class A biosolids. In order to make a marketable product, Class A digestion can be combined with soil blending, which involves mixing Class A biosolids with sand and woody materials, such as bark and sawdust, to create blends that can be used as potting mix or topsoil.

¹⁹ Composting is an aerobic biological process that uses microorganisms in the presence of air to decompose organic material and to produce heat to reduce pathogens to Class A requirements. Composting biosolids involves mixing Class B biosolids with woody materials and composting them.

²⁰ A compost market assessment showed that there is market opportunity for King County biosolids compost representing approximately 20 percent of the total biosolids production.

²¹ King County Code 28.86.090 Biosolids policies (BP).

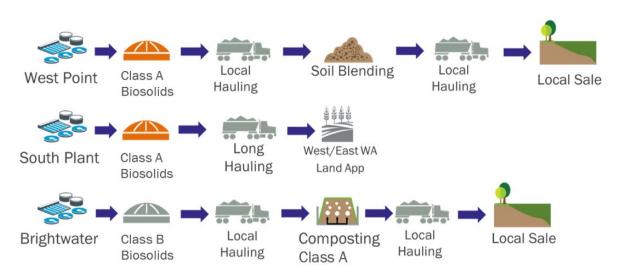


Figure 2: Depiction of Alternative Option One: 100 Percent Class A

Alternative Option Two: Pyrolysis

Although pyrolysis²² technology did not meet all the original technology evaluation criteria²³, a pyrolysis alternative option is included to demonstrate the benefits and tradeoffs of an emerging technology and a different programmatic direction. This alternative option, illustrated in Figure 3, would produce a potential Class A product called biochar. Biochar is a charcoal-like material that can be used as a soil amendment for improved soil health, though it does not provide much fertilization for plants. It has other potential uses as well, such as water filtration. In this option, all three treatment plants would continue to produce Class B biosolids while making changes required to address capacity needs through 2050.²⁴ One hundred percent of those biosolids would be hauled to a new offsite facility to be dried, compressed, and heated at a very high temperature to produce biochar.

²² Pyrolysis is a decomposition process that occurs at temperatures in excess of 572°F in the absence of air. The process produces a charcoal-like soil amendment called biochar.

²³ An offsite pyrolysis facility did not pass the screening because pyrolysis did not meet the federal definition for established technologies, did not produce more gas to increase renewable energy production, and may increase greenhouse gas emissions. In addition, pyrolysis is not an approved Class A treatment process under the state biosolids rule (WAC 173-308), meaning it can only be considered Class A on a case by case basis. Only four biosolids pyrolysis facilities are operational in the United States with the largest facility, located in Redwood City, California, processing only 7,000 wet tons per year (compared to King County's 130,000 wet tons).

²⁴ The assumed capital projects are high-level concepts that were developed to support this study. Capital projects to expand digestion capacity have not yet been determined through WTD planning or capital project delivery processes.

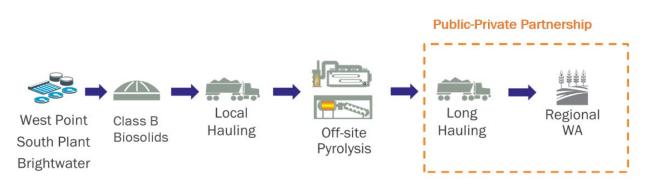


Figure 3: Depiction of Alternative Option Two: Pyrolysis

Other utilities, such as <u>Silicon Valley Clean Water</u>, have used a public-private partnership for this type of option and this option assumes that King County would own and operate the pyrolysis facility and a private partner would transport and sell the biochar product. Contractual arrangements can vary, but the most common pyrolysis contractual arrangements are for the private partner to own and operate the pyrolysis facility, and distribute and sell the biochar product. King County adjusted this to retain control of the pyrolysis facility to ensure quality control and regulatory compliance, and to reflect King County's standard contractual arrangements. Given the emergent nature of the biochar market, King County does not have the staff or infrastructure to handle the sale of the product. This is in contrast to the compost market, in which King County has decades of experience.

This option also includes biosolids drying technology. In order for pyrolysis to be effective, biosolids must first be dried to 60 to 90 percent solids. King County's biosolids are approximately 25 percent solids and 75 percent water. The advantages of pyrolysis include volume reduction and generation of a marketable end-product. Research also demonstrates the reduction of some contaminants of emerging concern, such as triclosan and nonylphenol.²⁵ It should also be noted that this option would require significant changes to biosolids policies in the King County Code.²⁶

A. Construction of a Local Facility

Both Alternative Option One: 100 Percent Class A and Alternative Option Two: Pyrolysis would require the construction of offsite local facilities, outside of the treatment plant footprints. The Baseline: Class B option assumes that all changes would take place on the sites of the regional treatment plants.

For Alternative Option One: 100 Percent Class A, it would be necessary to site, permit, and construct a soil blending and composting facility. At this facility, Class A biosolids from one of the regional treatment plants would be mixed with woody materials and/or sand to create soil blends for retail sale. Class A biosolids do not require additional treatment and could be used by the general public straight from the treatment plant, but soil blending allows for a higher quality, lower odor product, and more variety of products for different markets. Class B biosolids from the third regional treatment plant would be transported to this same facility to be mixed with woody material and composted to create a Class A

²⁵ Lee et al., 2018; Paz-Ferreiro et al., 2018; Ross et al., 2016

²⁶ King County Code 28.86.090 Biosolids policies (BP).

product for retail sale. Class A biosolids from the second regional treatment plant would go straight from the treatment plant to land application in eastern and western Washington.

To accomplish *Alternative Option Two: Pyrolysis*, King County would need to site, permit, and construct a drying and pyrolysis facility. Class B biosolids from the three regional treatment plants would be transported to this site. The Class B biosolids would be dried to 60-90 percent solids using drying equipment and then run through pyrolysis equipment to create biochar, which could be sold as a soil amendment or water filtration medium.

More information about the physical footprint of these facilities is outlined in section C of this report.

B. Costs and Benefits

Costs and benefits of the alternative options were compared to a continuation of the existing program. The types of costs and benefits included are defined in Table 2. In order to capture the complexity and compare these costs and benefits, several aspects were considered, including non-monetary costs and benefits. Non-monetary costs and benefits were provided through a greenhouse gas inventory²⁷ and a triple bottom line analysis²⁸. The Office of Performance, Strategy, and Budget has reviewed the fiscal information contained in this report.

Table 2. Types of Costs and Benefits				
	Description	Benefits		
Capital Costs	Fixed expenses for the purchase of land, buildings, construction, and equipment or upgrade of physical systems or equipment. Includes design, permitting, and site acquisition.	Revenue	Money received by King County from customers as payment for products and any associated services.	
Operating Costs	Day to day costs to operate facilities and equipment, and to implement and run programs. Includes staff and labor, maintenance and parts replacement, material use, energy and water consumption, and end- use including transportation.	Non-monetary benefits	Greenhouse gas offsets, carbon sequestration and qualitative environmental, social and economic benefits such as cleaner air.	
Non-monetary Costs	Greenhouse gas emissions and qualitative environmental, social and economic costs, such as odor or increased traffic.			

Table 2: Types of Costs and Benefits

²⁷ A greenhouse gas inventory is an accounting of greenhouse gas emissions and offsets. The greenhouse gas emission scopes and factors were based on the guidelines published by The Climate Registry (TCR) and Intergovernmental Panel on Climate Change (IPCC) and updated with recent publications.

²⁸ The triple bottom line is an analysis method to account for environmental, economic, and social factors, and is commonly used in planning or feasibility studies to evaluate King County alternatives, options, and projects.

Capital Costs

All options involve large capital investments to construct new systems as well as increased operational costs to and implement new processes by 2050. There are significant capital costs for three options.

Estimated total capital costs²⁹ for each option are shown in Table 3. For this study, capital costs were escalated to the construction midpoint of 2028 using an escalation rate of three percent to account for inflation and to estimate project capital costs and schedules. The totals represent implementation at all three treatment plants. Technical details detailed costs for each option can be found in Appendix A.

Table 3. Summary of Escalated Capital Cost (in \$ millions)			
Estimated Total Project Capital Cost (Escalated to midpoint of construction in 2028)			
\$335			
\$590			
\$1,115			

Table 3: Summary of Escalated Capital Cost

Even though the continuation of the current program, *Baseline: Class B*, does not require construction of a new offsite facility, it would require significant capital upgrades to the treatment plant digesters, (replacing or adding digesters and supporting systems), such as those that capture biogas for renewable energy or treat odor. These investments are needed to provide additional capacity to process more solids as the region's population increases. Capital costs for this option are estimated to be \$335,000,000.

Alternative Option One: 100 Percent Class A requires the construction of an offsite composting and soil blending facility. This would entail land acquisition and building a facility that includes components such as an aeration system to blow air through the compost, odor control systems, and ancillary equipment such as front end loaders and mixers. This option requires changes to two treatment plants to add Class A digesters, as well as maintaining and upgrading existing Class B equipment at one treatment plant to address solids capacity needs. Capital costs for this option are estimated to be \$590,000,000.

Alternative Option Two: Pyrolysis has the same requirements as the Baseline: Class B option at the treatment plants, which maintains and upgrades Class B digesters at the three treatment plants to serve an increased regional population. This option also requires land acquisition and the construction of an offsite drying and pyrolyzing facility, which includes components such as buildings, a dryer, boilers, pyrolysis units, and odor control. This option requires the most engineering and equipment. Capital costs for this option are estimated to be over one billion dollars.

²⁹ Estimated capital costs of either offsite facilities or upgraded digestion presented in this report are pre-planning level estimates based on the Association for the Advancement of Cost Engineering (AACE International) standards. WTD's capital cost estimating guidelines require capital costs to be estimated at key phases to further refine cost estimates as the project moves through the capital delivery process. Planning level estimates are conceptual and therefore have low levels of accuracy (+/-100 percent). These were input into King County's cost models.

Operation and Maintenance Costs and Revenues

In addition to the capital costs, all options have operation and maintenance costs and revenues. Operation and maintenance costs are the day to day costs to run the facility or program and include biosolids processing at the treatment plants and Biosolids Program operations such as research, compliance, monitoring, transportation, and application to customer sites in agriculture and forestry. Revenues from biosolids product sales, as well as electricity and renewable natural gas (produced by the digesters), are also included. Revenues are highly variable based on the market. The assumptions are variable due to the uncertainty of a 50-year projection. Market assumptions were made with knowledge of 2020 conditions only and were conservative. There is opportunity to optimize production and local sale of Class A products to decrease cost and increase revenue.

Total annual operations and maintenance costs were roughly the same for all three – the baseline and two options. Annual operations costs are presented for the year 2050, which assumes fully executed capital projects, full maturity of product markets and revenue, and a linear projected increase of biosolids production from 2018-2050. A summary of annual operations and maintenance costs and revenue is provided in Table 4, which includes annual transportation costs as part of operations and maintenance. Transportation costs alone for each option are provided in Table 5.

Table 4. Summary of 2050 Annual Operations and Maintenance (O&M) and Revenues (in \$ millions)				
Options	O&M	Revenues	Total	
Baseline: Class B	\$40.50	(\$11.10)	\$29.40	
Alternative Option One: 100 Percent Class A	\$49.00	(\$19.50)	\$29.50	
Alternative Option Two: Pyrolysis	\$39.00	(\$10.50)	\$28.50	

Table 4: Summary of 2050 Annual Operations and Maintenance and Revenues

Transportation Costs

Currently, King County contracts with a hauling company to drive 10 to 15 trucks of biosolids to eastern or western Washington land application sites from the treatment plants every day. The County owns a total of 35 trucks used for hauling and the County pays the contractor's hauling fees and fuel costs. Transportation costs highlighted in this section include hauling fees and fuel costs for the *Baseline: Class B, Alternative Option One: 100 Percent Class A,* and *Alternative Option Two: Pyrolysis.* These costs are included in the annual operating costs in Table 4, but are displayed separately for each option in Table 5, in millions of dollars.

Baseline: Class B assumes a continuation of the current hauling contract and has the highest transportation costs, due to the large proportion of product going to eastern Washington. Alternative Option One: 100 Percent Class A also assumes a continuation of the current hauling contract, but results in a lower transportation cost because the compost and soil blend products can be sold locally. Alternative Option Two: Pyrolysis has significantly lower transportation costs because, while a hauling contractor would still need to transport the biosolids from the treatment plants to an offsite pyrolysis facility, the distribution of the biochar product would be handled by a private business partner rather

than King County. This shifts the cost of transportation to the private partner, who could offset it through product sales and/or use it to negotiate the terms of the public-private partnership.

Table 5. Summary of 2050 Annual Transportation Cost (in \$ millions)			
Options	Transportation (Hauling and Fuel)		
Baseline Class B	\$6.00		
Alternative Option One: 100 Percent Class A	\$4.00		
Alternative Option Two: Pyrolysis	\$1.50		

Table 5: Summary of 2050 Annual Transportation Costs

Non-monetary Costs and Benefits

King County's capital and operating budget and project prioritization is informed by more than just monetary costs. It also includes qualitative costs, risks, and benefits that extend beyond economic considerations. To capture the non-monetary costs and benefits of each option, a greenhouse gas inventory and triple bottom line analysis were conducted.

Greenhouse Gas Inventory

Environmental benefits speak directly to several of King County's priority initiatives, such as the <u>Strategic</u> <u>Climate Action Plan</u> and <u>Clean Water, Healthy Habitat</u>. A greenhouse gas emissions inventory³⁰ was developed for each of the options based on the County's flow and load projections for the 2050 annual average load at each regional treatment plant.³¹ The inventory is based on greenhouse gas emitted during operation of the biosolids treatment facilities, transportation, and application of biosolids.

All options provide a net carbon credit, meaning they have the environmental benefits of having more carbon offsets and carbon sequestration than they do carbon emissions. Those net credits are shown in Figure 4 as credits, debits, and net credit in annual metric tons of carbon dioxide equivalent (mt CO_2E) per year (yr). To put these carbon credits into every day metrics, the *Baseline: Class B* option takes the equivalent of 14,000 cars off the road each year, *Alternative Option One: 100 Percent Class A* takes the equivalent of 13,000 cars off the road each year, and *Alternative Option Two: Pyrolysis* takes the equivalent of 3,000 cars off the road each year.

The greenhouse gas emissions from each option, presented as negative carbon debits, include transportation, process fuel and chemical use, fugitive emissions³², and electricity consumption. The positive carbon credits come from electricity produced and sold, renewable natural gas production, carbon sequestration, and fertilizer offset from land application of biosolids.

³⁰ A greenhouse gas inventory is an accounting of greenhouse gas emissions and offsets. The greenhouse gas emission scopes and factors were based on the guidelines published by The Climate Registry (TCR) and Intergovernmental Panel on Climate Change (IPCC) and updated with recent publications.

 ³¹ See King County Brightwater Treatment Plant Peak Flow and Wasteload Projections 2010-2060, 2019, King County. South Treatment Plant Peak Flow and Wasteload Projections 2010-2060, 2019, and King County. West Point Treatment Plant Peak Flow and Wasteload Projections 2010-2060, 2019 for more information.
 ³² Fugitive emissions are emissions of gases or vapors from leaks or other unintended releases of gases from pressurized equipment.

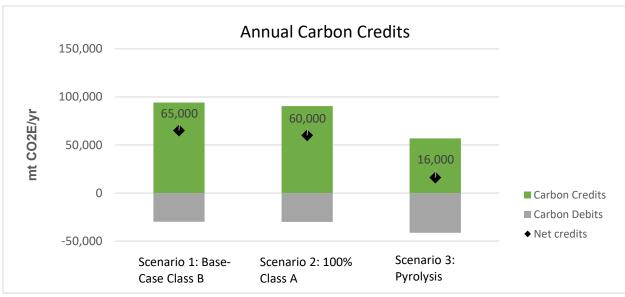


Figure 4: Annual Carbon Credits and Debits

Triple Bottom Line Analysis

Each option has differing environmental, equity, and social impacts. In order to capture the complexity of the costs and benefits of each option, a triple bottom line analysis was conducted. The three options were compared on a number of different environmental, social, and economic factors, such as traffic, odor, and noise increases, difficulty of implementation and operation, energy use, and market diversification. The weighted scores that are highest represent the best scenarios. Full triple bottom line results can be viewed in Appendix B.

The triple bottom line total score was very high for *Alternative Option One: 100 Percent Class A*, high for *Baseline: Class B*, and medium for *Alternative Option Two: Pyrolysis*.

- *Baseline: Class B* had high to very high scores in all criteria except flexibility to meet future regulations and market diversification/risk, both highly weighted criteria.
- Alternative Option One: 100 Percent Class A had the highest overall score due to very high scores in greenhouse gas emissions, flexibility to meet future regulations, market diversification/risk, and solids handling capacity. This scenario had high to very high scores in all other criteria, with the exception of noise, odor, traffic, and capital costs. Noise, odor, and traffic are equity impacts that would need to be considered and properly mitigated in the siting of a facility.

Alternative Option Two: Pyrolysis scored low to medium in each individual criteria category. Lower scoring criterion for pyrolysis included greenhouse gas emissions, energy use, regulatory compliance and beneficial use, capital cost, market risk/diversification, process reliability, and permitting.

C. Physical Footprint

New offsite facilities would require acquiring land. For each option, the amount of land required, or the physical footprint of the site, was estimated as shown in Table 6. All footprints assumed in this analysis are approximate, since land acquisition and site selection is an in depth regulatory and community

process. Actual footprint size would be refined further if an option was implemented, as it would vary based on the specifics of the technology and actual site constraints for the land selected.

Table 6. Physical Footprint (Land) Required			
Options	Number of Acres		
Baseline: Class B	0		
Alternative Option One: 100 Percent Class A	30-40		
Alternative Option Two: Pyrolysis	12		

Table 6: Physical Footprint (Land) Required

Baseline: Class B would require no additional land to continue Class B operations since there are no new offsite facilities and all changes are assumed to be at the treatment plant within the existing property boundaries.³³

Alternative Option One: 100 Percent Class A would require a new offsite facility for composting and soil blending, since there is not enough space at any of King County's three treatment plants for this component. This facility would require 30-40 acres total.

- An offsite soil blending and compost facility would require 23 acres for the composting treatment
 process, which includes receiving feedstocks³⁴, mixing feedstocks, composting, curing, screening,
 compost storage, and administrative buildings. The site would include a seven-acre buffer area to
 minimize any impacts to surrounding properties, with an additional 10 acres for soil blending and for
 product storage prior to retail sales, for a total of 40 acres.
- All other changes in this option are assumed to be made at the treatment plants within the existing property boundaries.

Alternative Option Two: Pyrolysis would require 12 acres total.

Due to existing space limitations at King County's three regional treatment plants, an off-site location would be required for a drying and pyrolysis system. An offsite pyrolysis facility processing 100 percent of King County's biosolids would require 12 acres to accommodate 12 belt dryers, three pyrolysis units, and ancillary equipment such as odor control, storage hoppers, conveyors, and boilers.

D. Storage Volume

The current King County Biosolids Program is designed to transfer biosolids from the treatment plants directly to land application sites for use as soon as the biosolids are fully treated. Biosolids are only temporarily stored in emergency situations when it is not possible to haul biosolids and/or land apply in either eastern or western Washington due to inclement weather and mountain pass closure. DNRP

³³ While the Brightwater and South treatment plants both have space allocated for additional digesters in their site footprint, there are competing space requirements from other high priority projects, such as the anticipated nutrient removal requirements being developed by the Washington State Department of Ecology. The West Point treatment plant is especially limited, with no additional acreage available and significant challenges working within the existing footprint.

³⁴ Feedstock refer to raw material used to supply or fuel an industrial process, such as composting.

contracts with the City of Everett Wastewater Treatment Plant to store biosolids at the facility during these weather events.

Temporary storage of biosolids requires an impermeable surface accessible by the trucks used for hauling, such as a paved area, and water runoff protections. The storage area at the City of Everett Wastewater Treatment Plant is a 60 foot by 100 foot paved space, which can hold approximately one week's worth of biosolids production from King County's three regional wastewater treatment plants. WTD can store approximately 100 truckloads (around 3,200 wet tons) on the site at a time. Biosolids are loaded into trucks at the treatment plant, hauled to the storage site, and unloaded. Stored biosolids are removed from the storage area and hauled to customers as soon as weather permits, generally within no more than a few days. In 2019, WTD took 88 loads to the storage area, totaling 2,775 wet tons. Over the last five years, WTD has sent on average 51 loads per year to the storage area and used no more than 44 percent of the total available space during peak storage times. Annual and future storage needs are difficult to predict, as they are determined by weather.

Baseline: Class B would require a similar temporary storage area or areas to the current City of Everett Wastewater Treatment facility space. *Alternative Option: 100 Percent Class A* would decrease storage needs, due to increased local hauling and diversity of products. In addition, the composting and soil blending facility proposed would be large enough to include a storage area similar to the current temporary storage option. Storage needs for *Alternative Option Two: Pyrolysis* would depend on the efficacy of the drying and pyrolysis equipment. Similar to *Alternative Option One: 100 Percent Class A*, the offsite pyrolysis facility could be designed to include temporary storage.

E. Map of Biosolids Applications

The map below in Figure 5 shows the locations where customers use King County's Loop biosolids to grow their plants and crops, referred to as land application. The green icons show the forestry customers while the yellow icons show the agriculture customers, with major cities starred as geographic reference points.

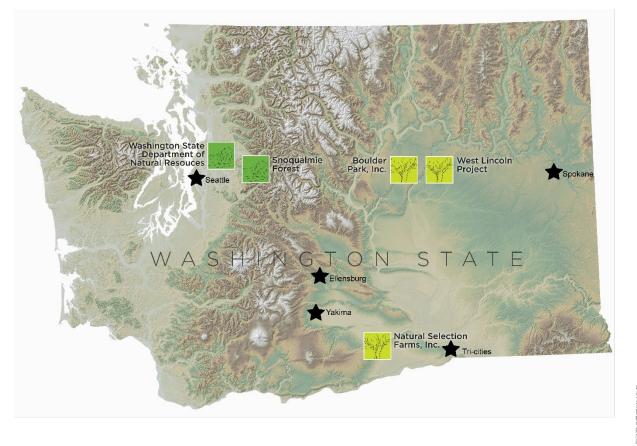


Figure 5: Mapped Locations of Current Land Application of Biosolids shown with green and yellow icons. The Washington State Department of Natural Resource land and Snoqualmie Forest are in King County. Natural Selection Farms is in Yakima County. Boulder Park Inc. is in Douglas County and West Lincoln Project in Lincoln County.

F. Financial Analysis

The financial analysis conducted shows that, regardless of Class B or A biosolids, significant investments are needed at all three treatment plants in the next 30 years to meet solids processing capacity needs for a growing population.

A summary explanation of how the options compare is below in Table 7.

Table 7. Total Costs and Scores					
	Baseline: Class B	Alternative Option One: 100 Percent Class A	Alternative Option Two: Pyrolysis		
Estimated Escalated Capital Costs	\$335,000,000	\$590,000,000	\$1,115,000,000		
2050 Annual Net Operating & Maintenance Costs and Minus Revenue	\$29,400,000	\$29,500,000	\$28,500,000		
Triple Bottom Line Score ³⁵	High	Very High	Medium		
Table 7: Total Costs and Scores					

Baseline: Class B requires significant capital investment to maintain the existing system and address projected capacity needs. Biosolids are a byproduct of necessary sanitation and public health infrastructure so production is continuous and cannot be turned off or halted. If the County cannot beneficially use its biosolids due to unexpected circumstances, such as the sudden loss or inaccessibility of a customer, the cost to landfill is projected to be at least \$3 million per month due to hauling and landfill fees. Landfilling biosolids also requires a regulatory waiver and creates potential for regulatory fines.

Alternative Option One: 100 Percent Class A decreases the regulatory challenges and risk, because it can diversify the Loop product line with multiple Class A products (compost, soil blends, biosolids). Producing multiple products diversifies the biosolids program's customer base, a key strategic plan goal that will ensure the biosolids program can continue to meet its regulatory mandate to beneficially use biosolids. Implementing an option like Alternative Option One: 100 Percent Class A, thereby transitioning King County's entire biosolids program to Class A, would require a long-term, phased approach since it requires multiple large and expensive capital projects.

Alternative Option Two: Pyrolysis adds regulatory challenges and risk to the existing program by processing 100 percent of Loop at one off site facility, which does not provide programmatic redundancy or distribution options. The financial analysis demonstrated that Alternative Option Two: Pyrolysis is the highest cost option. In addition, biochar has a limited and uncertain market and is only considered Class A under the state biosolids rule on a case by case basis.

As indicated by WTD's <u>Clean Water Planning</u> efforts, there are many competing priority needs and the County must make the right investment according to its priorities. Therefore, any major capital investment, including transitioning King County's biosolids program to Class A, would require a longterm, phased approach over the next 30 years because of the cost and the need to prioritize capital investments. A phased approach maintains the existing Class B program while slowly adding Class A as it aligns with other organizational goals such as adding solids treatment capacity.

³⁵ For more information on Triple Bottom Line, see Appendix B.

Conclusion

The study concluded that all future options, Class A or B, are costly and require significant technical and physical improvements. As digester capacity expansion is needed over the next 30 years at each of the regional treatment plants, opportunities to explore phased transition to Class A biosolids can be incorporated into planning efforts to address treatment capacity needs and maintain aging equipment.

Any development of a Class A program would require changes to biosolids policies in King County Code, since the King County Code currently prohibits the production and sale of anything other than Class B Biosolids.³⁶ WTD is currently in the process of designing a small-scale temporary compost pilot project at South Treatment Plant to test composting and explore marketability of a County-owned Class A compost. The current cost estimate for the pilot project is \$3.4 million with project completion anticipated in 2022/2023. This work in developing the pilot project to produce Class A compost at South Treatment Plant could help inform future planning efforts.

Appendices

Appendix A: Technical Memorandum Appendix B: Combined Financial, Environmental, and Social Costs and Benefits

³⁶ King County Code 28.86.090 Biosolids policies (BP).

Alternative Options for the Use of Biosolids $P a g e \mid 23$

Appendix A

Technical Memorandum

701 Pike Street Suite 1200 Seattle, WA 98101

T: 206.624.0100 F: 206.749.2200

Prepared for: King County Wastewater Treatment Division

Project Title: System-Wide Treatment Plant Flow and Loading Study

Brown and Caldwell Project No.: 151084

Technical Memorandum

- Subject: Class A Biosolids Technology Evaluation
- Date: April 20, 2020
- To: Catherine Gowan, King County Biosolids Manager
- From: Patricia Tam, Brown and Caldwell Project Manager
- Copy to: Ashley Mihle, John Conway

my

Prepared by:

Trung Le, Engineer III

Reviewed by:

Steve Krugel, Senior Vice President

Steery Krogel

Limitations:

This document was prepared solely for King County Department of Natural Resources and Parks in accordance with professional standards at the time the services were performed and in accordance with the contract between King County Department of Natural Resources and Parks and Brown and Caldwell dated August 1, 2017. This document is governed by the specific scope of work authorized by King County Department of Natural Resources and Parks; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by King County Department of Natural Resources and Parks and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

Table of C	ontents	i
Section 1:	Introduction	1
Section 2:	Technology Screening	1
	ids Technology Screening Criteria	
2.1.		
2.1.		
2.1.		
2.1.	4 Environmental Impacts	3
2.2 Biosol	ids Technology Screening Results	3
Section 3:	Biosolids Technologies	6
3.1 Anaer	obic Digestion	6
3.1.	1 Mesophilic Anaerobic Digestion	6
3.1.	2 Thermophilic Anaerobic Digestion	6
3.1.	3 Temperature-Phased Anaerobic Digestion	7
3.2 Digest	ion Pretreatment	8
3.2.	1 Thermal Hydrolysis Process (THP)	8
3.3 Produ	ct Enhancement Post-Digestion and Dewatering	9
3.3.	1 Composting	9
3.3.	2 Soil Blending and Manufactured Soils	10
3.4 Other	Stabilization Technologies	10
3.4.	1 Gasification and Pyrolysis	10
3.4.	2 Bioforcetech	15
3.4.	3 Mass and Energy Balance	16
3.4.	4 Biochar	19
Section 4:	Development of Conceptual Scenarios	20
4.1 Flows	and Loads	20
4.2 Scena	rio 1: Base-case	21
4.2.	1 West Point	21
4.2.	2 South Plant	22
4.2.	3 Brightwater	22
4.3 Scena	rio 2: Enhanced Class A	22
4.3.	1 West Point	23
4.3.	2 South Plant	23
4.3.	3 Brightwater	23
4.3.	4 Off-Site Composting Facility	24
4.3.	5 Off-Site Soil Blending Facility	24
4.4 Scena	rio 3: Off-Site Pyrolysis	25
4.4.	1 West Point	26
4.4.	2 South Plant	26

Brown AND Caldwell

List of Figures

Figure 1. Thermophilic anaerobic digesters at Annacis Island WWTP	7
Figure 2. TPAD at Western Lake Superior Sanitary District WWTP	
Figure 3. Cambi thermal hydrolysis process	
Figure 4. Basic configuration of a pyrolysis unit	11
Figure 5. Basic configuration of a gasification unit	11
Figure 6. Silicon Valley Clean Water Authority biosolids drying and pyrolysis system	
Figure 7. Diagram of mass and energy yield data at 500 °C	
Figure 8. Bioforcetech pyrolysis system process schematic	
Figure 9. Scenario 1: Base-Case	21
Figure 10. Scenario 2: Enhanced Class A	23
Figure 11. Example layout of an off-site Class A composting facility	24
Figure 12. Example layout of an off-site soil blending facility	25
Figure 13. Scenario 3: Off-site Pyrolysis	25
Figure 14. Example layout of an off-site pyrolysis facility	
Figure 15. Scenario 4: Optimized Class A	27
Figure 16. Summary of GHG emissions	

Brown AND Caldwell

Figure 17. Diagram of cash flow	30
Figure 18. Diagram of solids growth projections	32

List of Tables

Table 1. Class A Technology Screening	
Table 2. Class A Technology Short List	5
Table 3. Biosolids Pyrolysis and Gasification Projects	12
Table 4. Summary of Biochar Producers in the Pacific Northwest	14
Table 5. Pyrolysis and Gasification Company Consolidation and Bankruptcy	15
Table 6. Mass and Energy Yield Data	17
Table 7. Mass and Energy Yield Data Summarized from Bioforcetech Proposal	
Table 8. 2050 Annual Average Flows and Load	20
Table 9. 2050 Max Month Flows and Load	21
Table 10. Digester Peaking Factors	21
Table 11. Summary of Mass and Energy Outputs from the SWEET (2050 Flows and Loads)	
Table 12. Summary of GHG Emissions (2050 Flows and Loads)	
Table 13. Summary of Capital Costs (in 2020 \$ millions)	
Table 14. Summary of Solids Growth	31
Table 15. Summary of Net Present Value O&M and Revenues (in 2020 \$ millions)	32
Table 16. Summary of 2050 Annual O&M and Revenues (in \$ millions)	33
Table 17. Social and Equity Criteria Category Scoring	34
Table 18. Environmental Criteria Category Scoring	34
Table 19. Economic Criteria Category Scoring	35
Table 20. Technical Criteria Category Scoring	35
Table 21. Summary of Total TBL Scores	36

Section 1: Introduction

The purpose of this technical memorandum (TM) is to document the supporting materials and results of the Class A biosolids technology evaluation prepared for King County (County). This TM was developed to assist the County in preparing their response to Council Proviso 2019-0148.P3 Version 2. The proviso calls for the identification of Class A alternatives to the current Class B biosolids application in forest and farm environments. The County is interested in diversifying the biosolids products to increase resiliency. This evaluation built upon the King County Treatment Plant Flows and Loadings Study. The previous evaluation identified and screened solids treatment technologies for each of the County's three regional treatment plants. Other earlier studies conducted for the County on Class A biosolids treatment alternatives were also used as background materials for this study.

This TM documents the following subtasks performed for this evaluation:

- Class A technology screening
- Overview descriptions of the short-listed technologies, including a more detailed description of the gasification/pyrolysis technology
- Development of biosolids treatment and reuse scenarios
- Conceptual modeling of each scenario to evaluate solids production, energy usage, and greenhouse gas (GHG) emissions.
- Development of conceptual capital and operating and maintenance (O&M) cost estimates
- Evaluation of the scenarios based on triple bottom line (TBL) criteria.

Preliminary results of the TBL evaluation were discussed in a review workshop with the County. This TM incorporates feedback from the County received at that workshop.

Section 2: Technology Screening

The first task for this study was to pre-screen potential Class A technologies to identify those that could produce a Class A biosolids product. The approach used was to first synthesize previous studies on biosolids processing technologies and perform an initial screening for Class A technologies; this resulted in a comprehensive list of relevant Class A technologies. Screening criteria were developed to further reduce the selection of Class A technologies to those potentially suitable for County biosolids management.

The following documents were used as references:

- King County Treatment Plant Flows and Loadings Study King County Biosolids Strategic Plan 2016 2037
- King County 2005 Class A Biosolids Workplan

The draft biosolids technology evaluation from the King County Treatment Plant Flows and Loadings Study, was used as the starting point for this evaluation with some modifications as described in the following sections below.

2.1 Biosolids Technology Screening Criteria

Four categories of screening criteria were developed and include:

- Technology maturity
- Improved process
- Resource recovery
- Environmental impacts

Details of each category are described below.

2.1.1 Technology Maturity

Technology maturity relates to the state of development and implementation of a given technology and is directly related to the risk/reliability of its adoption. The use of non-established technologies typically has a high degree of risk related to failure in the successful application of the technology and in meeting the required performance. Given these risks, non-established technologies were screened from the evaluation.

The implementation of international technologies in the U.S. poses challenges that are related to differences in regulations, materials and feedstocks, design standards, and market drivers. International technologies require adaption to U.S. standards and environment, which generally correlates to additional costs. A steeper learning curve may also result from being the first/early adopter of international technologies. Due to the increase in the risk of failure in meeting performance, international technologies that have no U.S. implementations were screened from the evaluation.

This analysis is based on the most current available information. The technology market for biosolids is constantly changing and adapting to new technology developments, maturation of technologies, and the discontinuation of others. Reassessing current non-established and non-U.S. implemented technologies in the future may result in these technologies advancing for further consideration. The three tiers of technology maturity used in this evaluation include:

- **Established:** This tier represents technology that has been well-established in the industry for solids processing applications; these technologies have broad usages with long records of performance.
- Non-established: This tier represents technologies that fall within the two following categories:
 - Embryonic: This first tier represents technology in its early development state or that has been demonstrated at bench or small pilot scales in a laboratory environment. In some cases, an embryonic technology may be proven at full scale with a different feedstock, but not with wastewater sludge. It may be in operation at one or two full-scale plants for a short duration but has not achieved a long-term proven status; therefore, technologies deemed embryonic were eliminated from further consideration.
 - Innovative: Innovative technology is commercially viable and has been proven at full scale in one or more installations. Innovative technologies have a shorter track record of reliable operation than established technologies (e.g., typically less than 5 years).
- U.S. Implementation: Many wastewater technologies have a global presence and the exchange of technologies internationally is common practice. When foreign technologies established in other markets enter the U.S. market, critical technical challenges can arise as well as issues with navigating and receiving approval from U.S. regulatory agencies. This presents a potential risk that can have negative and costly consequences for implementation.

Brown AND Caldwell

2.1.2 Improved Processes and Existing Technology Enhancement

Improved processes and existing technology enhancement are summarized as follows:

- Improved processes: Technologies categorized as improved processes include those that will improve current solids treatment performance. For example, improvements can include increased process efficiency, increased digester gas production, reduced power and polymer consumption, resource recovery, improved biosolids product quality, and a reduced required quantity of solids. Current solids treatment technologies at each WWTP have been proven acceptable under current conditions and are designated as the baseline case (existing) scenario technology. Any technology that will likely degrade performance from the baseline case was eliminated from further consideration.
- Existing technology enhancement: Technologies in this category are optimization strategies that can improve overall process performance while using existing infrastructure. These require minor infrastructure modifications or minor new component additions without adding major new process tankage.

2.1.3 Resource Recovery

Resource recovery relates to the beneficial use of biosolids and digester gas:

- Class A biosolids: This comprises technologies that produce Class A biosolids with one of U.S. Environmental Protection Agency's (EPA) Process to Significantly Reduce Pathogens processes or that have achieved Class A equivalency. This does not include technologies that can potentially produce biosolids products meeting Class A requirements but require site-specific equivalency determination and/or daily pathogen monitoring/reporting to prove compliance on each biosolids batch.
- New biosolids product: These technologies produce biosolids products other than dewatered Class B cake, which is currently produced at the County's WWTPs.
- More gas production: These technologies increase digester gas production over conventional mesophilic digestion. All major County plants currently produce and beneficially use digester gas. Increased digester gas production can be achieved by digester pretreatment and/or advanced digestion processes. Technologies that reduce or eliminate gas production were eliminated from further consideration.

2.1.4 Environmental Impacts

Environmental impacts include the impact on GHG emissions from the solids treatment processes. GHG emissions reductions can be achieved by reducing power and chemical consumption, increasing digester gas production, increasing or providing a higher level of beneficial use for digester gas, or reducing vehicle fuel consumption. BC eliminated technologies that significantly increase GHG emissions from further consideration.

2.2 Biosolids Technology Screening Results

The criteria established in **Section 2.1** were used to perform a technology screening. **Table 1** shows the preliminary technology screening results. This screening table originated from work completed for the King County Treatment Plant Flows and Loadings Study and was adapted for this study as described below. Technologies with acceptable maturity (or will have beneficial impacts over existing processes) were given a "✓" mark on that criterion. Technologies with detrimental impacts (as described above) are given an "X" mark on that criterion. Table cells were left blank where the technology was neutral or not applicable with respect to the criterion. Any technology with an "X" in any criterion was eliminated from further evaluation and shown as shaded cells in **Table 1** below.

	Table 1. Class A Technology Se	creeni	ng						
	Solids Processing Technologies								
				Improved Process					Environmental Impacts
Parameter	Technology	Established	U.S. Installations	Improved Process	Existing Enhancements	Class A Biosolids	New Biosolids Product	More Gas Production	GHG Emissions Reduction
	Conventional Mesophilic Anaerobic Digestion (CMAD) (baseline case South Plant, West Point, Brightwater)	~	~			X			
Anaerobic Digestion	Conventional TAD or TPAD with Batch Tanks	1	√	✓	✓	✓	✓	✓	✓
	Acid/Gas Anaerobic Digestion (AGAD)	1	✓	✓		X		✓	✓
	Post Aerobic Digestion (PAD)	X	 Image: A second s	✓		X			X
	Dual digestion (ATAD plus thermophilic anaerobic)	 Image: A second s	 Image: A second s	X	X	✓	✓	X	X
	Recuperative thickening (e.g., OMNIVORE™)	X	 Image: A second s	√	✓	X			
	Thermal hydrolysis (Cambi)	√	√	✓		✓	✓	✓	
	Thermal hydrolysis (Biothelys™, Exelys™, LysoTherm®, Haarslev™)	X	X	√		✓	✓		
	Thermal-chemical hydrolysis (PONDUS)	X	 Image: A second s	×		X		✓	
Digestion Pretreatment	Enzymatic hydrolysis (Monsal)	X	X	√		X		✓	 ✓
Tretredunient	Mechanical (Crown)	X	X	√		X		✓	
	Ultrasonic (sonix™, Sonolyzer®)	X	X	×		X		✓	
	Electrokinetic (BioCrack)	X	X	√		X		✓	
	Alkaline stabilization	 Image: A second s	✓	X		✓	✓	X	X
	Incineration with power generation	 Image: A second s	 Image: A second s	X		X		X	X
Other	Compositing (raw sludge)	√	×	X		✓	✓	X	X
Stabilization Technologies	Thermal drying (raw sludge)	 Image: A second s	 Image: A second s	X		✓	✓	X	X
	Gasification/pyrolysis	X	 Image: A second s			_2	✓	X	_3
	Hydrothermal oxidation (AquaCritox®)	X	X				✓	X	✓
	Hydrothermal liquefaction-gasification (Genifuel Corporation)	X	X				✓	X	✓
Product Enhancement Post-Digestion and Dewatering	Thermal drying	1	×	X		✓	✓	X	X
	Solar Drying	1	√	<mark>X</mark> 1		✓	✓		
	Thermal-chemical hydrolysis (Lystek)	X	× -	X		 Image: A second s	✓		
	Composting	✓	✓	✓		✓	✓		
	Soil blending, Post Class A Digestion	 Image: A second s	✓	✓		✓	✓		

¹ Solar drying is only feasible in eastern Washington due to the lower solar radiation of the region. Auxiliary heating in terms of natural gas would be needed to supplement drying requirements.

² The Washington Department of Ecology (Ecology) does not have a policy that covers pyrolysis and will require a review of Class A designation for these systems on a case by case bases.

³ Some gasification and pyrolysis systems can become energy neutral or positive based on the dry solids content of the dewatered cake entering the system. The Bioforcetech system evaluated was paired with a belt dryer rather than a biodryer based on the manufacturer's recommendation. This pairing resulted in the system requiring external energy input.

Brown AND Caldwell

Several changes were made to the draft biosolids technology evaluation prepared during theKing County Treatment Plant Flows and Loadings Study and are noted below:

- 1. Added Class A solar drying to the list based on its inclusion in the evaluation from the KC Strategic Plan 2018-2037
- 2. TAD and TPAD alternatives were combined with batch tanks as one alternative.
- 3. The ATAD component of Dual Digestion does not produce gas and requires significant additional energy to digest. TAD/TPAD with batch tanks represents a better alternative for enhanced Class A digestion for County plants.
- 4. Cambi thermal hydrolysis process (THP) is the only THP technology with a U.S. Installation. Cambi will be the representative technology for THP.
- 5. Class A Biosolids was updated to be a screening criterion
- 6. U.S. Installations was added as a screening criterion
- 7. PAD was updated with an X for GHG due to energy use for aeration
- 8. Thermal drying was updated with an X for improved process due to increase in energy use
- Thermal-Chemical Hydrolysis (Lystek) was updated with an X for improved process due to the creation of a liquid product that would require additional trucking and application, not consistent with County product goals
- 10. Off-site and on-site designations were removed to be more generic for soil blending and composting

A short-list of the technologies remaining after this screening process is shown in **Table 2**. All technologies that received negative marks in any criterion were removed from further consideration. Pyrolysis did not meet the specified criteria for screening but was included in the evaluation due to interest from the County Council.

Table 2. Class A Technology Short List									
	Solids Processing Technologies								
Parameter		Technology Maturation		Improved Process	Resource Recovery			overy	Environmental Impacts
	Technology	Established	U.S. Installations	Improved Process	Existing Enhancements	Class A Biosolids	New Biosolids Product	More Gas Production	GHG Emissions Reduction
Anaerobic Digestion	Conventional Mesophilic Anaerobic Digestion (CMAD) (baseline case South Plant, West Point, Brightwater)	~	~			x			
0	Conventional TAD or TPAD with Batch Tanks	 Image: A start of the start of	 Image: A start of the start of	✓	✓	 Image: A start of the start of	×	 Image: A start of the start of	✓
Digestion Pretreatment	Thermal hydrolysis (Cambi)	×	 Image: A start of the start of	 ✓ 		×	×		
Other Stabilization Technologies	Gasification/pyrolysis	x	~			_1	~	x	2
Product Enhancement Post- Digestion and Dewatering	Composting	 Image: A state of the state of	 Image: A second s	✓		 Image: A start of the start of	 Image: A start of the start of		
	Soil blending, Post Class A Digestion	 Image: A state of the state of	×	✓		 Image: A start of the start of	×		

¹ Ecology does not have a policy that covers pyrolysis and will require a review of Class A designation for these systems on a case by case bases.

² Some gasification and pyrolysis systems can become energy neutral or positive based on the dry solids content of the dewatered cake entering the system. The Bioforcetech system evaluated was paired with a belt dryer rather than a biodryer based on the manufacturer's recommendation. This pairing resulted in the system requiring external energy input.

Section 3: Biosolids Technologies

This section provides a brief overview of the short-listed technologies. A longer discussion on pyrolysis technologies is included and covers the status of the technology and the biochar market. This discussion was not included in the previous evaluation under Task 450 as it had not passed the technology screening.

3.1 Anaerobic Digestion

3.1.1 Mesophilic Anaerobic Digestion

Mesophilic anaerobic digestion (MAD) is the most commonly used anaerobic digestion process in the U.S. Mesophilic digesters are operated within the mesophilic temperature range, 95 to 102 degrees Fahrenheit (°F), at solids retention times (SRTs) exceeding 15 days. Typically, loading criteria range from 100 to 160 pounds of volatile solids (Ib-VS) per 1,000 cubic feet (ft³) per day (d) with limiting loadings rates of 200 Ib-VS/1,000 ft³/d. The process produces substantial methane-rich digester gas that has high thermal value and is commonly used as a renewable fuel.

Mesophilic digestion produces a Class B biosolids as defined by the U.S. Environmental Protection Agency's (USEPA) Part 503 regulations and is suitable for most large-scale agricultural, forest, and mine reclamation applications. Class B biosolids have some application restrictions to protect public health and safety.

3.1.2 Thermophilic Anaerobic Digestion

Thermophilic anaerobic digestion (TAD) occurs at temperatures between 120 and 135 °F, at conditions suitable for thermophilic microorganisms. Biochemical reactions increase with temperature; therefore, microbial reactions in TAD are much faster than mesophilic digestion. The advantages of TAD include increased solids destruction capability, improved dewatering, increased gas production, and increased pathogen destruction. Because of the increased biochemical reaction rate, loadings to a TAD have been reported as high as 500 lb-VS/1,000-ft³/d, significantly higher than those of MAD.

Disadvantages of TAD include higher energy requirements for heating, poorer supernatant quality, and higher dewatering odor requiring treatment. In addition, thermophilic dewatered cake has slightly higher initial end product odor due to higher ammonia that dissipates relatively quickly. Higher solids destruction rates in a thermophilic digester release greater concentrations of ammonia which contributes to the poorer supernatant quality, potentially impacting the plant's liquids steam processes. TAD also requires additional heat exchangers and heat resources relative to MAD to heat the digester to higher temperatures; however, heat recovery systems can greatly reduce heating costs. **Figure 1** is a photograph of the TAD operated by Metro Vancouver at the Annacis Island Wastewater Treatment Plant (WWTP) in Delta, British Columbia.



Figure 1. Thermophilic anaerobic digesters at Annacis Island WWTP

If properly configured, TAD can produce Class A biosolids. To prevent the potential for short-circuiting and increased pathogen levels above the Class A criterion in the biosolids, batch tanks are often used. The wastewater solids are held in a batch tank for a set period of time (24 hours hold time required for Class A at 131°F) to prevent the opportunity for any solids to pass through the entire digestion process in a shorter time period than required (i.e., short-circuiting the process). To meet USEPA requirements for Class A biosolids, separate batch tanks (or batch operation of the digesters) would need to be included with a TAD process. Without batch operation, the biosolids from the TAD process operated at higher temperatures and configured properly can potentially produce biosolids that meet Class A requirements for pathogen reduction, but would require testing of each biosolids batch.

3.1.3 Temperature-Phased Anaerobic Digestion

Temperature-phased anaerobic digestion (TPAD) incorporates the advantages of TAD and mitigates some of the disadvantages through the incorporation of MAD to improve performance. TPAD uses digesters in series, where the first stage is thermophilic followed by a mesophilic stage. The high biochemical reaction rate in the thermophilic phase improves solids destruction capability, improves dewaterability of the sludge, increases gas production, and increases pathogen destruction rates. The following mesophilic stage(s) improves the performance of the overall digestion system and helps mitigate the disadvantages of TAD (specifically, poorer supernatant quality and odors). The higher temperature of the thermophilic stage and configuration's ability to minimize short-circuiting contributes to greater pathogen destruction. As with TAD, TPAD can be configured with batch tanks to produce Class A biosolids. Also similar to TAD, a greater number of heat exchangers and heat resources are required to heat the wastewater solids to thermophilic temperatures and then cool the solids to mesophilic temperatures. **Figure 2** is a photograph of the TPAD system at Western Lake Superior Sanitary District's WWTP in Duluth, Minnesota.

Brown AND Caldwell

Figure 2. TPAD at Western Lake Superior Sanitary District WWTP

3.2 Digestion Pretreatment

3.2.1 Thermal Hydrolysis Process (THP)

Class A THP is a mature technology in Europe and worldwide with full-scale facilities in service since 1995; the first installation in the U.S. (Blue Plains plant in Washington, DC) has been operating since late 2014 and other U.S. installations are in the planning, design, and construction phases. THP is a pretreatment process prior to anaerobic digestion. There are two primary manufacturers of Class A THP – Cambi and Veolia. Class A THP uses medium-pressure steam to create high temperature and pressure conditions, which lyse (break open) bacterial cells and promote the release and solubilization of particulate organic material, making the feed solids more amenable to digestion. **Figure 3** depicts a typical process flow of the Cambi Class A THP system for pretreatment of wastewater solids before digestion.

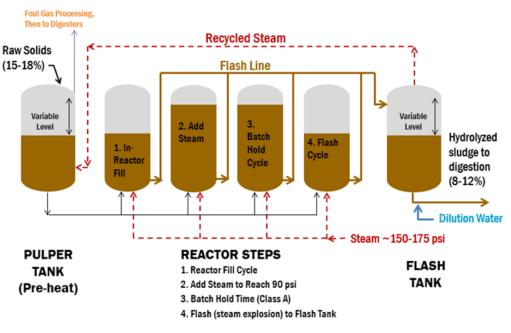


Figure 3. Cambi thermal hydrolysis process

THP systems can approximately double conventional MAD organic loading rates because of the modified characteristic of the feedstocks. This more efficient use of digester volume reduces the number of digesters required. Ancillary buildings and equipment are required to operate a THP system, including steam boilers, solids screening, pre-dewatering, raw cake storage and pumping, and solids dilution and cooling systems. While THP systems can reduce the required digester volume, the ancillary systems impact total system cost, complexity, and footprint.

The vast majority of Class A THP systems have been implemented by Cambi. However, competitor THP systems (Biothelys[™], Exelys[™], LysoTherm[®], Haarslev[™]) have been installed in Europe, and Veolia's Biothelys system has been installed in the United Kingdom. Due to the lack of U.S. installations from THP manufacturers, this evaluation will use Cambi's THP system as the representative technology for THP systems alternatives.

3.3 Product Enhancement Post-Digestion and Dewatering

3.3.1 Composting

Composting is the most common method used to produce Class A biosolids in the U.S. To meet the criteria for Class A, composted biosolids must meet regulated metals, pathogen and vector attraction reduction limits, comply with required sampling and analysis protocols, maintain compost temperature and retention time records, and meet product labeling requirements.

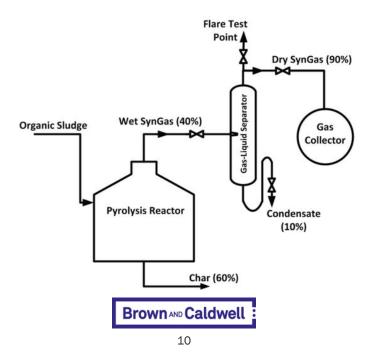
Digested biosolids dewatered cake can be composted with sawdust, wood chips, yard clippings, storm debris, food waste, manure or crop residues, and food processing wastes. The final composted product provides nutrients and organic matter and sequesters carbon, thereby conserving resources, restoring soils, and combating climate change. Additionally, composting has been a long used process to reduce environmental contamintants. Research and composting applications have shown that aerobic composting can be effective at reducing antimicrobial resistant genes/bacteria and organic pollutants (Semple et al., 2001; Youngquist et al., 2016; Ozaki et al., 2017).

Composted biosolids are used in agriculture, horticulture, and landscaping just like any other retail soil product. Professional landscapers and master gardeners use composted biosolids for landscaping new homes and businesses. Home gardeners also find composted biosolids to be an excellent alternative to typical fertilizer.

Many composting technologies are available in the market and can vary from low-tech with limited process control to high-tech with precise process control. Many of these technologies can improve the composting process by providing better control of environmental factors, aeration rates, temperature, etc. In-vessel composting is one such method that uses silos, structures, plastic material, or other physical barriers to improve the composting process. Generally, these technologies provide the best composting process with the most efficient use of space and overall best product quality. Windrow composting is the most simplistic and widely used composting method. Windrow composting uses long rows and short piles of mixed biosolids and organic material that are mechanically aerated with a front-end loader or a windrow turner. This method is typically less controlled, uses a significant amount of space, and requires greater manual labor. Aerated static pile (ASP) composting is a high-rate composting method that sits between windrow and in-vessel composting. It is more compact and can be covered or uncovered. Piles or windrows are placed on top of porous bulking agents like wood chips with channels or pipes that provided negative or positive forced aeration through the piles while removing process water. ASPs are the second most widely used composting system and commonly used for biosolids composting.

3.3.2 Soil Blending and Manufactured Soils

Soil blending can be used to improve overall product quality or to change the product characteristics by blending biosolids with other organic and inorganic materials. However, the feedstock to any soil blending operation must be a Class A biosolids cake. These manufactured soils can be formulated to provide specific characteristics for unique applications and to reach a wider market through product diversification. Soil blended products can be publicly distributed in bag or bulk form. Generally, public reception of blended products tends to be positive due to similarities with existing non-biosolids soil conditioning products and reduced odors. The City of Tacoma produces several blended products including their most popular product, TAGRO Classic, which is comprised of two parts Class A dewatered cake, two parts sawdust, and one-part sand. Other blended products that are offered include mulch products that contain 80 percent woodchips and 20 percent biosolids and a potting soil mix of 20 percent biosolids, 20 percent maple sawdust, and 60 percent clean, aged bark. TAGRO has been largely successful with their blended products with demand often exceeding supply.

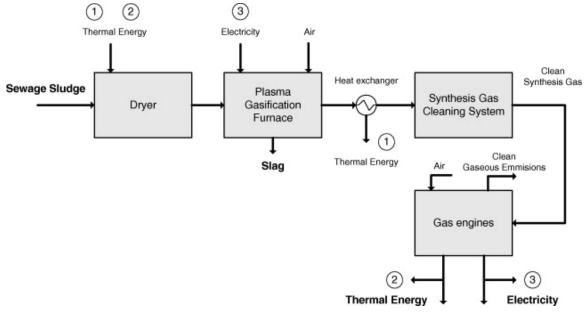

3.4 Other Stabilization Technologies

3.4.1 Gasification and Pyrolysis

Gasification and pyrolysis are technologies that have been widely used in other industries, principally using wood waste as a carbon source, but with very limited applications in the wastewater/biosolids industry. The following sections provide a description of the technologies and a discussion of the status of their development.

3.4.1.1 Technology Description

Pyrolysis is the thermal decomposition and partial mineralization of carbonaceous materials occurring in an anaerobic environment. Thermal decomposition typically occurs at temperatures in excess of 300°C. The anaerobic environment can promote the breakdown of carbon-rich feedstocks into an energetically favorable endpoint (e.g. methane) to generate a modest amount of combustible gas called syngas or pygas. The condensable fraction of the syngas can be stored and used as a liquid fuel and is often referred to as bio-oil. The remaining solid residue is a high-value product called biochar. Biochar has a thermal value similar to coal, functions as an adsorbent like activated carbon, and can also be used as a soil conditioner to improve overall soil health. A basic configuration of a pyrolysis unit and its major components is provided below in **Figure 4**.




151084_Class A Biosolids Tech Eval TM_final_4-20-20

Figure 4. Basic configuration of a pyrolysis unit

The advantages of pyrolysis include residuals volume reduction, the potential for net energy production, carbon fixing into a stable form in biochar, and generation of a value-added product in biochar. In addition to the various end uses for biochar, research has also demonstrated the removal of contaminants of emerging concern such as triclosan and nonylphenol to non-detect levels during pyrolysis (Lee et al., 2018; Paz-Ferreiro et al., 2018; Ross et al., 2016). While pyrolysis itself can be energy positive, it requires prior biosolids drying to 60 to 90 percent total solids, requiring a substantial increase in energy input and representing a substantial additional investment in capital outlay and operational and maintenance costs for the biosolids dryer. As described further below, biochar management contracts are now commercially available at no cost to the generator with opportunities for revenue sharing.

Pyrolysis is often linked with gasification, which is another thermal process that combines the thermal decomposition step of pyrolysis with a controlled oxidation zone where limited air, oxygen, or steam is added to partially oxidize the volatilized organics. In gasification, the oxidation zone is consequently followed by a reductive zone where further cracking and reforming of the gases takes place to produce a syngas made up of lighter hydrocarbons compared to that of pyrolysis, with a smaller condensable fraction. While the condensable fraction of pygas has an energetic value and has been successfully processed into a usable liquid fuel with various feedstocks, it is highly acidic and unstable when heated making it difficult to handle. A basic configuration of a gasification unit and its major components is provided below in **Figure 5**.

3.4.1.2 State of Technology

Applications of biosolids-based pyrolysis and gasification systems have been extremely limited due to the high technical risks, large capital cost, and the additional research and process adaption that is required when transferring technologies from other industries. The non-homogenous characteristics of biosolids, which can fluctuate in the amount of organic and inorganic content, can result in operational challenges. These challenges include impacts to the energy balance of the system requiring external natural gas or the addition of wood feedstocks to prevent interruption in the pyrolysis process. These conditions could dramatically increase operational costs and reduce the overall reliability of the system. The variations in the characteristics of biosolids may also change final product quality and increase the corrosion of the systems

which would require additional maintenance. These factors can impact the long-term success of programs and can result in failure which is further discussed in **Section 3.4.1.6**.

Only three biosolids pyrolysis/gasification facilities are operational in the U.S. with the largest facility processing 7,000 wet tons per year. This facility represents only 6 percent of the biosolids produced from the County's biosolids management program. This is out of a total of 33 U.S. gasification and pyrolysis facilities, where the other 30 plants process other feedstocks such as wood waste into syngas and biochar The limited number of facilities suggests that the technology remains an emerging technology with needs for a longer operation history, more research, and additional installations.

Table 3 below lists identified projects currently in operation, taken out of service, or are under planning, design, or construction.

		Table 3. Bios	olids Pyrolysis an	d Gasification	Projects		
Company	Facility	Location	Feedstock	Туре	Scale	Status	Biosolids Capacity (WT/Yr)
Aries Clean Energy	Linden Roselle Sewerage Authority complex	Linden, New Jersey	Biosolids	Gasification/ Pyrolysis	Full-scale	Q4 2020	130,000
Aries Clean Energy	Lebanon Waste-to- Energy Plant	Lebanon, Tennessee	Woodwaste and biosolids	Gasification/ Pyrolysis	Full-scale	2016 - present	1,095
Aries Clean Energy	City of Covington	Covington, Tennessee	Woodwaste and biosolids	Gasification/ Pyrolysis	Full-scale	2014 - present	730
Aries Clean Energy	Aries-Holloway Bioenergy Facility	Lost Hills, California	Agricultural biomass	Gasification/ Pyrolysis	Full-scale	Q3 2021	60,225
Max West	Sanford Utility Department	Sanford, Florida	Biosolids	Gasification/ Pyrolysis	Full-scale	2009-2014 decommissioned	14235
Bioforcetech	Silicon Valley Clean Water	Redwood City, California	Biosolids	Pyrolysis	Full-scale	2017 - present	7000
Bioforcetech	Edmonds Wastewater Treatment plant	Edmonds, Washington	Biosolids	Pyrolysis	Full-scale	2021	-
Anaergia	Rialto Bioenergy Facility	San Bernardino, California	Biosolids and foodwaste (70%)	Pyrolysis	Full-scale	2020	109,500
Anaergia	Encina Wastewater Authority	Carlsbad, California	Biosolids	Pyrolysis	Pilot/ demonstration	2014	-
KORE Infrastructure	LACSD joint Water Pollution Control Plant	Carson, California	Biosolids	Pyrolysis	Pilot/ demonstration	2008-2015	1000

The chemical, material, and energy industries have shown a growing demand for investments in pyrolysis and gasification plants as a means for the development of alternative fuels and carbon products. Approximately 272 gasification plants are in operation worldwide and 74 additional plants are under construction based on a 2014 update of the gasification facilities database by Global Syngas Technologies Council. According to some research studies, the global market for biochar is expected to increase to the range of \$653M-\$3,100M by 2027 (TechSci Research, 2019; Research Nester, 2018). The largest growth in pyrolysis/gasification applications can be seen in the use of agriculture waste, biomass, organics, plastic/tire, and coal to produce renewable natural gas production, biochar, and bio-oil. Recent bans in international recycling outlets for plastics has also seen an increase in investment in plastics-to-oil solutions. In the last decade, the aviation industry has begun a campaign to decarbonize air travel by using sources for renewable aviation fuel (IRENA, 2017). All of these market drivers have spurred the rapid development of the pyrolysis and gasification industry.

12

3.4.1.3 European and International Applications

The adoption of pyrolysis and gasification technologies in Europe has advanced more rapidly than the U.S. No other international applications could be found outside of Europe and the U.S. In Europe, the use of pyrolysis and gasification technologies has been limited to the energy, materials, and forestry industry. Similar to the U.S., there are limited applications of pyrolysis and gasification of biosolids. Less than a dozen facilities use biosolids as a feedstock and are primarily small scale facilities. Europe's application of biosolids pyrolysis and gasification can be classified as emerging and likely faces similar risks and regulatory development requirements as the U.S.

3.4.1.4 United States Applications

Gasification has been evaluated with different feedstocks over the past few decades and has faced a number of historical operational challenges including concerns for dioxin formation in oxygenated pockets, difficulty in scaling reactors, and deformation or slag formation from residual product within the reactor. The most recent example of full-scale biosolids gasification occurred at the Maxwest Sanford Florida facility that operated from 2009 to 2014. The system operated as a 20-dry ton per day regional biosolids receiving and processing facility; however, the system was never able to achieve the targeted operational efficiency or reliability and was decommissioned. The technology has since been sold to a new company, Aries Clean Energy, who successfully operates two full-scale gasifiers that run on a combined feedstock of wood waste and biosolids. These facilities process only a fraction of biosolids compared to wood-waste and more details can be seen in **Table 3**. Aries Clean Energy recently obtained funding and has started construction of a regional biosolids gasification facility in Linden, New Jersey.

Pyrolysis has been evaluated at a number of facilities at pilot scale, including Los Angeles, California by Kore Infrastructure and Encina, California by Anaergia. The first full-scale biosolids pyrolysis unit was commissioned in June 2017 at the Silicon Valley Clean Water Authority in Redwood, California. The unit was supplied by Bioforcetech, an Italy-based technology provider, and is capable of processing 1,300 pounds of dry biosolids product per hour. The unit was approved by EPA as a non-incineration process and permitted by the Bay Area Air Quality Management District as a process heater. Regulations for biosolids biochar are currently undefined. Washington state approval for a Class A biosolids product will be on a case by case basis until additional research or updates to regulations occur.

3.4.1.5 Biochar Market

In 2018, a survey of the U.S. biochar industry was conducted in North America. The survey was sent to both biochar producers and consumers (Draper et al., 2018). Out of an estimated 135 U.S. biochar producers, 61 producers (18 percent resellers) responded. These producers reported that their primary pyrolysis feedstock was woody biomass but could also include other organic materials such as manure, grass, agricultural waste, construction waste, fiber, and food waste. Data from the survey suggested that the annual production of biochar in the U.S. was 35,000 to 70,000 tons. End-uses for biochar were primarily in agricultural application, draining, cannabis production, and odor control. This is consistent with biochar potential uses in compost, soil amendment, gardening, livestock bedding, and land and water reclamation projects (Draper et al., 2018). The average price from all producers was \$129 per cubic yard or approximately \$763 per ton assuming a bulk density of 338 pounds per cubic yard.

The largest expected market growth for biochar is for crop application and then for use for water purification and filtration (Draper et al., 2018). In the Pacific Northwest region, several producers of biochar currently provide a variety of products.

Table 4 below summarizes biochar producers and prices in the Pacific Northwest.

Table 4. Summary of Biochar Producers in the Pacific Northwest						
Producer	State	Feedstock	Product	Bagged Price (\$/CY) ¹	Bulk Price (\$/CY) ¹	Bulk Price (\$/DT) ²
Pacific Biochar	California/Oregon	Forestry Residues	Blacklite Mix #6	\$164	\$135	\$521
Sonoma Biochar	California	Wood waste	Sonoma Biochar	\$470	\$240	\$1420
Oregon Biochar Solutions	Oregon	Wood Waste Residues	Rogue Biochar	\$150	\$110	\$799
Sunriver Biochar	Oregon	Wood	Sunriver Biochar	\$500	-	-
Biochar Supreme	Washington	Forestry Residues	Black Owl Premium Biochar	\$1054	\$350	\$2071
Olympic Biochar	Washington	Paper Mill Byproduct	Olympic Biochar	\$135	\$105	\$621

¹ Prices reflect November 2019 values from respective websites.

² Assumes an average dry bulk density of 338 lbs per cubic yard.

Although biochar has a potentially high value, market studies have suggested that the demand for the product does not currently meet the supply. The high price of biochar is cost prohibited for wider adoption of the product by more general consumers such as conventional agriculture, home garden, lawn care, and commercial nurseries. The high price point of biochar in general agriculture would require unrealistic increases in crop productivity to break even with cost. Biochar is more likely to be used as a small faction additive to blended products for wider distribution.

The recent growth in biochar suppliers is likely reflective of early adopters who are positioning for potential future demand. This occurrence is typical in emerging markets. However, a search for biochar producers indicated that the market is still in its infancy. Approximately half of the producers documented in a 2015 survey are no longer in business.

Biosolids-based biochar has not been tested in the biochar market and its market acceptance is unknown. Considering that applications for biochar currently are in high value and niche products, biosolids biochar is unlikely to portray similar positive associations when compared to virgin wood-based biochar. Bioforcetech has suggested a price per ton in the range of \$250, which is approximately 15 to 25 percent of the market price for other biochar products. Biosolids biochar may find more success in mixed/blended products compared to pure products.

3.4.1.6 Risks and Challenges

Implementation of technologies with high capital requirements, limited applications, and advanced or complex processes presents a challenge of high technical and financial risk. A recent report from Waste Gasification and Pyrosis Technology Risk Assessment by the environmental-leaning company GAIA estimated that billions have been lost in the development of failed pyrolysis and gasification projects. The report cites \$2 billion lost from just four UK projects (GAIA, 2017). Failure of gasification and pyrolysis systems have largely been associated with restrictive capital costs, technical and system failures, and limitations in the market demand of end products.

Due to the slow traction and implementation of pyrolysis and gasification technologies, significant consolidation of independent and "start-up" companies has occurred over the last decade. This shift has seen larger companies purchasing and absorbing pyrolysis and gasification technologies to bolster their product lines. However, this change in the vendor market indicates that some companies have financial vulnerabilities and the precarious financial nature of startup companies in sustaining long-term operation. The acquisition of smaller pyrolysis and gasification companies by larger conglomerates does allow for a reduction in the risk of investing in new technologies which have the financial backing.

Brown AND Caldwell

Table 5 lists gasification and pyrolysis companies that have conducted business ventures in North Americain the past decade but have undergone bankruptcy or acquisition.

Table 5. Pyrolysis and Gasification Company Consolidation and Bankruptcy			
Company	Status		
MaxWest Environmental Systems	Declared Bankruptcy. Acquired by Aries Clean Energy		
Oneida Seven Generations Corp	Defunct		
Navitus Sustainable Industries	Defunct		
Lehigh Technologies	Acquired by Michelin		
GE Gasification Division	Acquired by Air Products		
U.S. Linc Energy Ltd	Declared Bankruptcy		
Solena Fuels	Declared Bankruptcy		
Lima Energy	Declared Bankruptcy		
KiOR (Inaeris Technologies)	Declared Bankruptcy		
Plasco Energy Group	Declared Bankruptcy, Acquired RMB Advisory		
RWE (Germany), Uhde,	Acquired ThyssenKrupp Uhde		
Carbon Resources Recovery GmbH	Acquired by Klean Industries		
Thermogenicx	Defunct		

3.4.2 Bioforcetech

Bioforcetech was founded in 2012 and is part of the is the Presezzi Extrusion Group based in Italy. Their first U.S.-based pyrolysis system came online in June 2017 at the Silicon Valley Clean Water Authority in Redwood, California.

Figure 6 below shows the biodryer and pyrolysis unit located in Silicon Valley. Bioforcetech has since supplied two biosolids pyrolysis units in Italy and is in the planning phase at the City of Edmonds, Washington for a pyrolysis system that is coupled with solids belt dryers to replace the city's incinerator. Their European partner PYREG GmbH, has 16 operating plants with two biosolids facilities in Europe. Because Bioforcetech is the only company currently using pyrolysis on biosolids alone in the U.S., it was selected as the representative pyrolysis technology for this study.

Their pyrolysis technology is a 24/7 autonomous system that operates at temperatures between 450 to 750°C. The pyrolysis process is coupled with a biodryer that uses biogenic heat to supplement the energy required for drying before pyrolysis. This allows for a low-energy and high-efficiency system that can potentially be energy self-sufficient. For the biodyer to work, it operates at a low capacity and may not suitable for all projects. Bioforcetech has partnered with Centrisys to offer a higher capacity compact low-temperature belt dryer. For this study, Bioforcetech recommended the use of the belt-dryer with the pyrolysis system.

The pyrolysis process works by first thermal drying the biosolids to greater than 70 percent dry solids through the use of a belt dryer. The dried biosolids are then fed to the pyrolysis unit where natural gas is used to start-up the process to reach the pyrolysis temperatures. The high temperatures volatilize the organic carbon to produce pygas. The pyrgas is combusted in a separate chamber and used to heat the outer casing of the reactor allowing the process to be self-sustained without natural gas at that point.

15

Bioforcetech provides a variety of different contracts and funding options to utilities. Bioforcetech's implementation at Silicon Valley Clean Water Authority is currently though a 10-year biosolids management contract where Bioforcetech owns and operates the system. However, Bioforcetech now offers multiple pyrolysis supply contracts where they can operate the system under short and long-term agreements or offer training and startup support to plant staff.

Figure 6. Silicon Valley Clean Water Authority biosolids drying and pyrolysis system

3.4.3 Mass and Energy Balance

BC performed a mass and energy balance analysis for biosolids pyrolysis to evaluate vendor-supplied performance data and develop expected operating criteria for input into BC's SWEET model for estimating overall system energy and greenhouse gas profiles. At the time of this report, there is limited data published related to mass and energy yield assessments for biosolids pyrolysis. Two mass and energy studies perform laboratory scale pyrolysis reactions with a similar experimental setup and temperature range. The first study conducted by Yuan et al. (2013), operated bench-scale pyrolysis reactions until gas production ceased and did not present the residence time of the reaction. This study presented substantially higher yields of biochar than the second, conducted by McNamara et al. (2016), which performed all pyrolysis experiments for a duration of at least 40 minutes. The reported duration of the second study more closely matches the target retention time of the Bioforcetech system (30 min.) evaluated for this project and the reported biochar mass yield. It is likely that the 2013 experiment performed the pyrolysis experiments at shorter retention times than the Bioforcetech system, thus the 2016 study was used to evaluate the mass and energy yields for this project.

The 2016 study collected mass and energy content data from a digested and dried biosolids pyrolysis feed product generated from the Milorganite production facility in Milwaukee, Wis., and the resulting volatilized and biochar fractions from pyrolysis. The gas from the system was run through an impinger to collect the oil (or tar) fraction and the data for the oil and non-condensable gas is presented separately. A summary of the mass and energy yield data presented as a percentage of the mass and energy content of the feed biosolids

at a range of temperatures is provided below in **Table 6**. The original mass data reported for the pyrolysis products was within 8 percent of the feed mass and was normalized below to project the full mass yield for the SWEET model. The difference in the sum of the energy yield percentage data for the products from 100 percent represents the enthalpy of the reaction. If the sum of the energy yields is less than 100 percent, that means that the process was exothermic and did not require additional heat input to sustain the operation. Where the energy yield content sum is higher, that difference represents the cost of energy for pyrolysis.

Table 6. Mass and Energy Yield Data						
Nominal Temp	Bio	char	0)il	Syr	igas
(°C)	Mass	Energy	Mass	Energy	Mass	Energy
300	71%	81%	25%	8.2%	4.1%	0.1%
400	57%	55%	37%	26%	5.3%	1.1%
500	46%	33%	46%	68%	8.3%	5.8%
600	44%	31%	46%	37%	10%	10%
700	41%	30%	47%	37%	12%	11%
800	39%	26%	43%	55%	17%	19%

Source: Summarized from McNamara et. al. (2016)

An example schematic of the mass and energy yield data is provided below in **Figure 7** to provide a diagram of the experimental setup and products generated from a pyrolysis run at 500 °C.

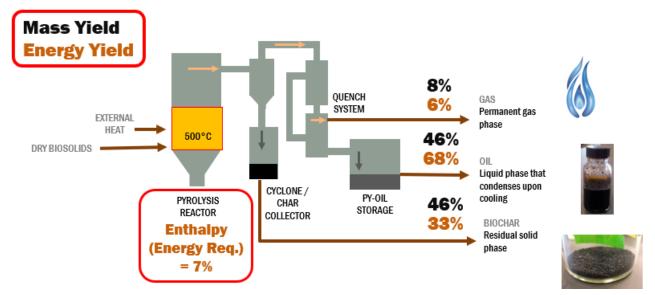


Figure 7. Diagram of mass and energy yield data at 500 °C

The mass and energy yield data summarized from the study by McNamara et. al. was compared to the performance data for the commercial pyrolysis units proposed by Bioforcetech for this project. Bioforcetech supplies two pyrolysis units called the P-Five and P-Three that are operated at a temperature range of 350 °C to 720 °C.

The major difference between the laboratory scale study and the Bioforcetech proposal is that the Bioforcetech system immediately combusts the pyrolysis volatile fraction before condensation can take place, circulates the hot exhaust gas through the pyrolysis reactor jacket to provide thermal energy to the reaction (if required), and then transfers the thermal energy through an air-to-water heat exchanger to potable or filtered process water to supply useful thermal energy in the form of the hot water. Thus the energy yield projected by Bioforcetech represents the useful thermal energy in the form of hot water and accounts for the inefficiencies of heat transfer throughout the process. A process schematic of the Bioforcetech system with exhaust heat recovery is presented below in **Figure 8**.

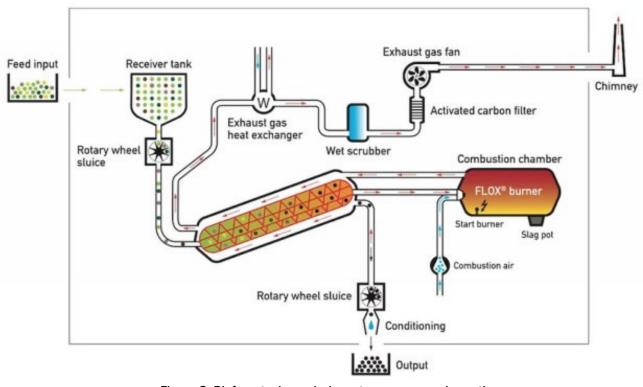


Figure 8. Bioforcetech pyrolysis system process schematic

(Source: Bioforcetech)

A summary of the capacity data for each pyrolysis unit, along with the anticipated mass and energy yield for each system based on the proposal provided by Bioforcetech is provided below in **Table 7**.

Table 7. Mass and Energy Yield Data Summarized from Bioforcetech Proposal					
Parameters	Source	P-Three	P-Five		
Max Throughput (Ib-total solids/hour)	Reported	264	792		
Min. Feed (% total solids)	Reported	60%			
Max Biochar Production (lb/hour)	Reported	106	317		
Biochar Mass Yield	Calculated	40%			
Max Energy Production (MMBtu/hr)	Reported	0.5	1.5		
Useful Thermal Energy Yield ¹	Calculated	2	27%		

¹ Useful thermal energy recovered in hot water assuming energy content of 7,000 Btu/Ib of digested biosolids feed.

The calculated biochar mass yield of 40 percent most closely resembles the 41 percent mass yield observed at 600 °C and is within 5 percent of the mass yield observed at 700 °C in the study summarized above, showing good agreement. At 600 °C, the energy yield of the combined oil and gas fraction was 48 percent in the lab study. When compared to the reported useful thermal energy yield of the Bioforcetech system of 27 percent, this represents a thermal efficiency of 58 percent through the combustion and heat exchangers systems assuming no energy is required by the reactor. This is within a reasonable range assuming each component has a thermal efficiency of 75 percent to 80 percent and also shows good agreement with the lab-scale study.

Based on the results of this analysis, the SWEET model was updated with the lab-scale mass and energy yield parameters for 600 °C. The useful thermal energy generation was calculated based on the thermal efficiency of 58 percent calculated from the Bioforcetech proposal assuming an energy content of 7,000 Btu/lb in the digested biosolids feed. The useful thermal energy was assumed to be at temperatures suitable for heating a belt dryer and was used to offset the natural gas demand required for fueling the hot water dryer heating boiler.

3.4.4 Biochar

Limited research exists on the GHG emissions impacts of biochar's application on agriculture and soils. Biochar has been stated to impact emissions by limiting biogenic carbon mineralization by carbon fixation, improving soil health and thereby reducing natural GHG emissions from the soil, and increasing crop productivity.

Pyrolysis converts approximately 10 to 50 percent of the organic carbon biomass into a stable recalcitrant carbon. The recalcitrant carbon is "fixed" and highly stable resisting decomposition over the span of hundreds to thousands of years. Under normal circumstances, natural organic matter decay would have mineralized the carbon into CO₂. Pyrolysis changes that natural carbon-neutral process into a carbon-negative process. The potential for biochar's use to offset carbon emission was recently accepted by the international panel for climate change (IPCC) as a promising negative emissions technology. The IPCC categories the production and use of biochar under viable options for carbon dioxide removal.

Current literature is inconclusive on the impacts of biochar on soil CO₂, CH₄, and N₂O emissions. This is largely due to the large variety and complexity of soil systems. Primary factors that influence CO₂, CH₄, and N2O emissions include biochar type, crop selection, crop rotation, temperature, moisture/precipitation, cropping systems, and soil type. Several field studies and meta-analysis studies have found that biochar reduced N₂O emissions from soil (Cayuela et al., 2015; Cross et al, 2011; Fidel et al., 2018; Liu et al., 2018). Other studies have found an increase in N₂O emissions or no impact after the first year (Borchard et al., 2019; Wang et al., 2019). The N₂O emissions reductions were most apparent in paddy and sandy soils (Borchard et al., 2019; Wang et al., 2019). CH4 emissions were seen to increase when used in paddy fields (Wang et al., 2019; Zhang et al., 2010). In this study, only the fixed carbon sequestration was considered. Given the vast number of variables that can influence biochar's effect on soil GHG emissions, field testing and monitoring of biochar may be required for better estimation of GHG emission reductions. This would allow for site and application-specific impacts of biosolids based biochar.

Data provided by Bioforcetech showed that 28.6 percent of the Silicon Valley Clean Water facility's biochar was comprised of carbon. Biosolids biochar has less carbon content than woody biomass biochar and would reflect less carbon sequestration. Assuming similar conditions for the County's theoretical biochar and that 90 percent of the carbon remained fixed over its lifetime, an emissions factor was calculated to reduce 0.9337 kg of CO₂e per kg of biochar applied. **Attachment A** provides more details on estimating carbon sequestration value.

A more thorough literature review and field emissions sampling may be required to refine the assessment of biochar's impacts on GHG emissions.

Section 4: Development of Conceptual Scenarios

The technologies screened and described in the previous sections are building blocks of comprehensive biosolids treatment and use scenarios available to the County. The applicability of the short-listed technologies at each County wastewater treatment plant was dependent on the site-specific constraints, process compatibility, and County preferences. Four scenarios were developed for evaluation in this study from the short-listed technologies and each provides biosolids management for all biosolids produced by KC wastewater treatment plants. It is important to emphasize that the scenarios outlined below are just example of how a combination of appropriate technologies and strategies could be deployed. The examples below do not necessarily represent specific strategies for the named facilities, but rather high-level strategies that could be applied in a variety of combinations. The four scenarios are presented below.

- Scenario 1: Base-case Existing MAD with 100 percent Class B land application to western and eastern Washington
- Scenario 2: Enhanced Class A Existing mesophilic digestion at Brightwater with Class B biosolids hauled to an off-site Class A composting facility and local sales; Cambi at South Plant with Class A land application in western and eastern Washington (40 percent/60 percent); and TAD with batch tanks at West Point and off-site soil blending with local sales
- Scenario 3: Pyrolysis Existing mesophilic digestion at all three plants with dewatered cake hauled to offsite thermal drying and pyrolysis treatment. Biochar byproduct contracted to Bioforcetech under a public-private partnership.
- Scenario 4: Optimized Class A Existing mesophilic digestion at Brightwater with Class B biosolids hauled to an off-site Class A composting facility and local sales; TAD with batch tanks at South Plant with Class A land application in western and eastern Washington (40 percent/60 percent); and TAD with batch tanks at West Point and off-site soil blending with local sales

The development of the first three scenarios was intended to represent a comparison between the existing program, the feasibility of a 100 percent Class A biosolids program, and a pyrolysis program. Scenario 4 was later included to represent an optimized and more cost-effective Class A program than Scenario 2. All off-site facilities were assumed to be located in the South King County area based on details from the *WTD – Class A Basis of Estimate for a Composting Facility* (King County Project No. 1132733).

4.1 Flows and Loads

The sizing for each of the scenarios was based on flows and loads that were projected to a 2050 design year. Raw influent flows and loadings for each of the three plants were provided by the County as part of the Flows and Loads Study to evaluate treatment plant capacity limitations. A plant-wide solids mass balance model calibrated during that study was used to calculate digester feed solids loading rates from the 2050 raw influent flows and loadings. **Tables 8 and 9** list the 2050 annual average and 2050 max month loadings, respectively. **Table 10** contains details on the peaking factors. The peaking factors are based on a combination of loading projections provided by the County and historical data at each plant.

Table 8. 2050 Annual Average Flows and Load							
Parameters West Point South Plant Brightwater							
Digester feed TS load (lb/d)	225,860	263,760	93,910				
Digester feed TVS load (lb/d)	182,890	226,530	84,400				
Digester feed %TS	6.1	6.2	5.8				
Dewatered solids TS load (lb/d)	101,170	120,810	39,450				

	Dewatered solids %TS	28.5	22.9	20.0
--	----------------------	------	------	------

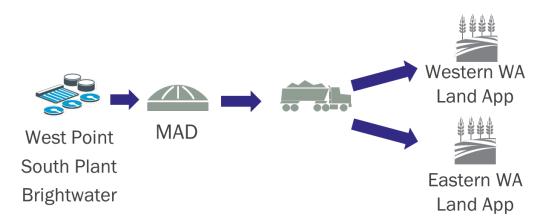

Table 9. 2050 Max Month Flows and Load							
Parameters West Point South Plant Brightwater							
Digester feed TS load (lb/d)	255,760	303,520	110,640				
Digester feed TVS load (lb/d)	207,660	259,700	94,300				
Digester feed %TS	6.1	6.2	5.8				
Dewatered solids TS load (lb/d)	114,240	139,470	49,400				
Dewatered solids %TS	28.5	22.9	20.0				

Table 10. Digester Peaking Factors					
Parameters	West Point	South Plant	Brightwater		
Digester feed max 2-week/max month load	1.18	1.20	1.10		
Digester feed max week/max month load	1.22	1.23	1.12		
Digester feed max day/max month load	1.60	1.30	1.50		

4.2 Scenario 1: Base-case

Scenario 1 was intended to represent maintaining the existing conditions of the County's biosolids management program. Each of the three plants would continue with MAD to produce a Class B biosolids product that would then be trucked to western and eastern Washington for land application. This scenario assumed all solids would be directed to land application to simplify the evaluation even though the current program produces a small amount of Class A compost (less than 1 percent of the Class B biosolids).

Figure 9 is a diagram of Scenario 1. Assumptions on existing digester capacity were taken from the analysis in the King County Treatment Plant Flows and Loadings Study.

Figure 9. Scenario 1: Base-Case

4.2.1 West Point

The 2050 flows and loads projections indicate that West Point would need two additional 2.4 MG mesophilic digesters to meet future capacity requirements based on an organic loading limit of 0.17 lb VS/ft³/d. However, West Point currently faces site footprint constraints to accommodate additional digesters. Without

demolition of other existing facilities or locating in spaces allocated for future liquid stream treatment, West Point would need to convert to an intensification technology such as Class B TAD that would increase capacity without requiring additional digester buildout. For the purpose of evaluating the base case Scenario 1 in this study, two additional MAD digesters were used for costing which has a higher cost than the conversion of mesophilic digesters to TAD.

4.2.2 South Plant

The 2050 flows and loads projections indicate that South Plant would need one additional 2.75 MG mesophilic digester to meet capacity requirements based on an organic loading limit of 0.20 lb VS/ft³/d. South Plant has available space for four (4) additional digesters and would be able to site the one new digester, but South Plant's footprint availability and constraints are subject to change as other projects may take priority due to regulatory requirements or other plant needs.

4.2.3 Brightwater

The 2050 flows and loads projection indicates that Brightwater would need one additional 1.25 MG mesophilic digester to meet capacity requirements based on an organic loading limit of 0.17 lb VS/ft³/d. Brightwater currently has available space for two additional digesters and should be able to site the one new digester.

4.3 Scenario 2: Enhanced Class A

Scenario 2 was developed for comparison to other scenarios as a representative mix of Class A processes that could provide a 100 percent Class A biosolids management program for the County. West Point would be converted to a TAD-batch Class A process and would truck their dewatered cake to an off-site soil blending facility. A more detailed alternatives analysis would be needed in the future prior to selection of the final thermophilic technology, TAD or TPAD. The Class A soil blended product would then go to local sales and distribution. South Plant would be converted to a Class A THP-MAD process with land application in western and eastern Washington. Brightwater would continue with Class B MAD process and truck their dewatered cake to an off-site Class A composting facility that would be adjacent to the soil blending facility. The Class A compost products would then go to local sales and distribution. Figure 10 shows a diagram of Scenario 2.

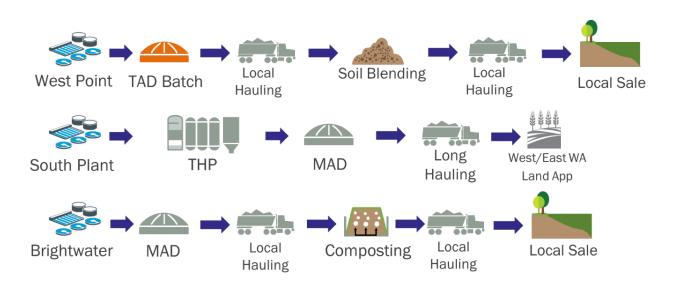


Figure 10. Scenario 2: Enhanced Class A

4.3.1 West Point

Construction of a THP-MAD system at West Point would be challenging if not impossible due to the site limitations which would potentially require the removal of two digesters to fit the ancillary equipment and THP units onsite. Additionally, to construct the new treatment system, temporary trucking of half of West Point's raw wastewater solids to South Plant would be needed for additionally processing throughout a likely three or four-year construction period. Preliminary sizing of a THP-MAD process suggests that its integration at West Point would be challenging and cost prohibited. For the purpose of this study, Therefore, TAD was selected as the Class A digestion process to be implemented at West Point.

TAD can be implemented using different types of configurations with the most common being TAD and TPAD with batch tanks. For this study, TAD with batch tanks (TAD-batch) was selected as the digestion technology.

The application of TAD can increase the organic loading rate on the digesters by more than double current limitations on MAD digesters, freeing up solids digestion capacity. This was reflected in the fact that no new TAD digesters would be required for 2050 flows and loads with an organic loading limit of 0.4 lbs VS/ft³/d. The implementation of TAD-Batch would require space for a 1.6 MG rectangular batch tank complex which represents the peak day flow. Conversion from MAD to TAD would require fixing digester covers and mixing, and heating upgrades.

4.3.2 South Plant

The available space at South Plant makes it compatible with THP-MAD. THP-MAD would require predewatering, screening, solids storage hoppers, steam boilers, and four (4) CAMBI THP process trains. No new digesters would be required for a THP-MAD process based on 2050 flows and loads and an organic load limit of 0.4 lbs VS/ft³. THP-MAD would require fixed covers, mixing, and heating upgrades.

4.3.3 Brightwater

Under all scenarios, it was assumed Brightwater would stay with MAD and require 1 new digester for 2050 loads. Note that existing Brightwater digesters have fixed covers and they were designed with space allocation for potential future conversion to TAD Dewatered cake from Brightwater would be trucked to an off-site Class A composting facility for further treatment.

4.3.4 Off-Site Composting Facility

In Scenarios 2 and 4, an off-site Class A composting facility would process the Brightwater dewatered cake. The 2050 flows and load is equal to 35,857 WT/yr, which is approximately 19 percent of the dewatered cake of King County in 2050. The composting process would use aerated static piles. The site would require space for receiving and mixing, composting, curing, screening, and compost and feedstock storage. The site would also include an administration/operation building and space for maintenance staff. The approximate site size is 23 acres and 30 acres with a buffer.

Figure 11 below shows the basic layout for an off-site composting facility.

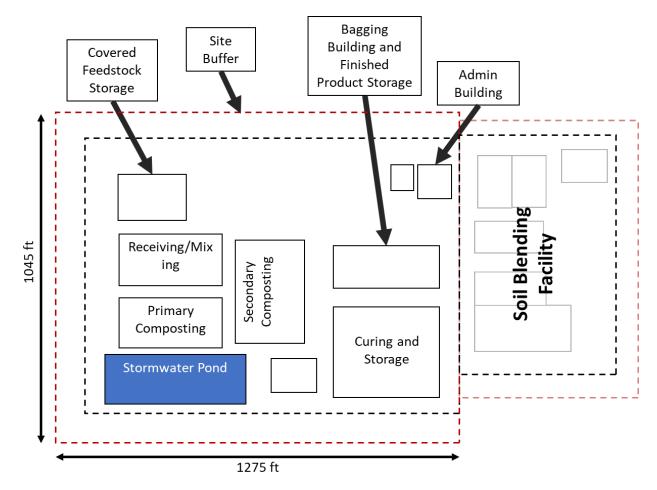


Figure 11. Example layout of an off-site Class A composting facility

4.3.5 Off-Site Soil Blending Facility

An off-site soil blending facility would process West Point's Class A dewatered cake to create a high quality blended biosolids product. The intent of this blended product is to diversify the County's program and potentially generate some revenues from bulk and bagged sale of the product. The soil-blending facility would be designed based on the City of Tacoma's blended product Tagro. This would require mixing biosolids with sand and sawdust at a ratio of 40:40:20 biosolids: sawdust: sand.

The soil blending facility would need space storage space for biosolids cake, sawdust, sand, or other material. Two horizontal auger batch mixers will be used to mix the product.

Figure 12 below shows the basic components of an off-site soil blending facility. The facility was assumed to be adjacent to the composting facility and would require additional space for the soil-blending processes. The administration and operations building, stormwater, and bagging facility was assumed to be shared with the adjacent composting facility. Additional space will be needed for mixing and storage. The approximate size of the soil blending facility would require an additional 9 acres and 11 acres with additional buffer.

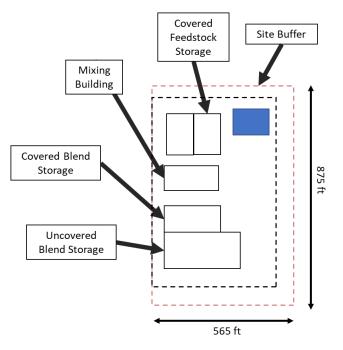


Figure 12. Example layout of an off-site soil blending facility

4.4 Scenario 3: Off-Site Pyrolysis

Scenario 3 includes the application of a pyrolysis system for all of King County's biosolids production. West Point, South Plant, and Brightwater would continue with their current Class B processes similar to Scenario 1. The dewatered cake would be transported to the pyrolysis facility to be thermally dried and pyrolyzed into biochar. The end use of biochar would be part of a public-private partnership (P3) in which Bioforcetech would transport the biochar and sell it. Approximately 10 percent of the profit would be returned to the County. **Figure 13** shows a diagram of Scenario 3.

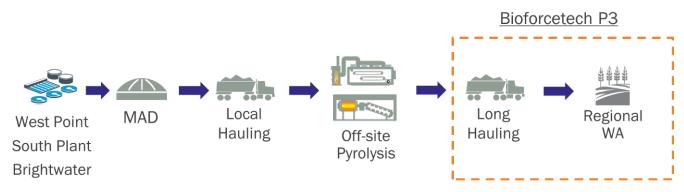


Figure 13. Scenario 3: Off-site Pyrolysis

4.4.1 West Point

Refer to **Section 3.2.1** for in-plant changes. Dewatered cake from West Point would be trucked to the off-site pyrolysis facility for further treatment.

4.4.2 South Plant

Refer to **Section 4.2.2** for in-plant changes. Dewatered cake from South Plant would be trucked to the offsite pyrolysis facility for further treatment.

4.4.3 Brightwater

Refer to **Section 4.2.3** for in-plant changes. Dewatered cake from Brightwater would be trucked to the offsite pyrolysis facility for further treatment.

4.4.4 Off-Site Pyrolysis facility

Due to site constraints at West Point, South Plant, and Brightwater, an off-site location would be required for a pyrolysis system. Bioforcetech would be used as the representative technology for pyrolysis due to it being the only technology with a U.S. installation. A belt dryer will be used upstream of the pyrolysis system rather than the Bioforcetech's Biodryer due to its low capacity which would increase cost and space requirements. This design is based on another ongoing design of a Bioforcetech facility located in Edmonds, Washington. To meet the demand 2050 flows and load projections, the site would need 12 DLT 1120 belt dryers and 24 BFT P-THREE pyrolysis units. Ancillary equipment would be needed such as odor control, storage hoppers, conveyors, and boilers. The approximate size of a facility would require 6.2 acres and 12 acres with additional buffer.

Figure 14 shows the basic footprint of the off-site pyrolysis facility.

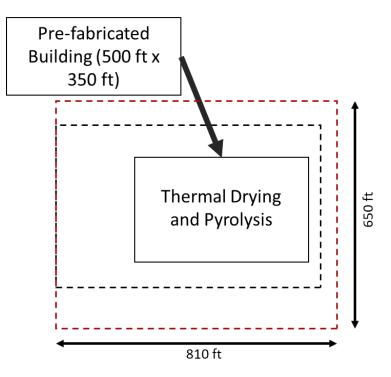


Figure 14. Example layout of an off-site pyrolysis facility

4.5 Scenario 4: Optimized Class A

Scenario 4 was added due to the high cost of the THP process and to provide an opportunity to compare a different Class A digestion approach. Scenario 4 is identical to Scenario 2 except that South Plant would also be converted to a TAD-Batch Class A digestion process instead of a THP-MAD process. **Figure 15** shows a diagram of Scenario 4.

Figure 15. Scenario 4: Optimized Class A

Refer to Section 4.3 above for details on West Point, Brightwater, soil blending, and composting.

Section 5: Solids, Energy, and Greenhouse Gas Evaluation

With the four scenarios defined, a technical evaluation of the solids, energy, and GHG emissions for each scenario was completed. BC's Solids-Water-Energy-Evaluation Tool (SWEET) was used to evaluate the mass and energy balance and the performance of the scenarios at a high level. SWEET tracks volatile solids, inert solids, and water through potential process alternatives, and considers the energy required to power and heat those processes. This allows for energy production and material recovery to be estimated based on the 2050 flows and loads. A GHG inventory was developed for each scenario-based material consumption, electricity, process fuel, transportation fuel, fugitive emissions, carbon sequestration, and fertilizer offsets.

The following sections describe the results of the evaluations using SWEET.

5.1 Mass and Energy Results

Mass and energy outputs for each scenario were developed based on annual average 2050 flows and loads and are summarized in **Table 11**. The solids treatment process performances were based on the design criteria presented in **Attachment A**, while power, chemical, and vehicle fuel consumption were based on historical data. The results of the SWEET model were used to develop the TBL and O&M costs.

Several assumptions were made to complete mass and energy balances. These are summarized in **Attachment A**. The results of the SWEET model can be seen in **Attachment B**.

Brown AND Caldwell

Table 11. Summary of Mass and Energy Outputs from the SWEET (2050 Flows and Loads)					
Parameter	Scenario 1 Base-case	Scenario 2 Enhanced Class A	Scenario 3 Pyrolysis	Scenario 4 Optimized Class A	
Final Product, Wet (WT/d)	539	689	63	744	
Trucks Required (Trucks/d)	19	67	22	68	
Vehicle Fuel Consumption (gal/day)	1952	1360	104	1445	
Electricity Demand (MWh/d)	75	101	203	85	
Electricity Generation (MWh/d)1	-42	-45	-42	-45	
Net Power (MWh/d)	33	56	160	40	
Natural Gas Consumption (scfm)	145	260	708	210	
Digester Gas Produced (scfm)	3325	3419	3325	3502	
Methane Injected into Pipeline (scfm)	778	787	778	829	
Polymer Use (lb/day)	4611	6359	4611	4344	

¹ Electricity generated through co-gen at West Point is sold to Seattle City Light and not used internally.

5.2 Greenhouse Gas Emission Results

A GHG emissions inventory was developed for each of the scenarios based on the annual average 2050 flows and loads. GHG inventories for the scenarios were developed based on GHGs emitted during operation of the biosolids treatment facilities, and transportation and end-use of biosolids.

The emission scopes and factors were based on the guidelines published by The Climate Registry (TCR) and Intergovernmental Panel on Climate Change (IPCC) and updated with recent publications. Emissions were divided into three categories representing the system boundaries of direct and indirect emissions of GHG:

- **Scope 1 emissions** are direct emissions from sources owned by the agency (e.g., emissions from fuel combustion by the agency, fugitive emissions from the agency's facilities)
- Scope 2 emissions are indirect emissions from sources outside the agency's facility boundaries (e.g., emissions from the production of electricity consumed by the agency)
- Scope 3 emissions are all other indirect emissions such as emissions from the manufacturing of materials used by the agency (e.g., polymer used for dewatering)

Emissions were not considered for the construction of the facilities. This is largely due to the fact that lifecycle emissions have been shown to be more significant than those emitted during construction and from construction materials.

The GHG emissions from each scenario are listed in **Table 12** and shown in **Figure 16** below. The negative emissions are shown as carbon credits and come from electricity produced and sold, renewable natural gas production, carbon sequestration and fertilizer offset from land application of biosolids. More detailed information on GHG emissions can be found in **Attachment B**.

	Table 12. Summary of GHG Emissions (2050 Flows and Loads)Metric Tons of CO2 Equivalent per Year				
Scope	Parameter	Scenario 1: Base-case	Scenario 2: Enhanced Class A	Scenario 3: Pyrolysis	Scenario 4: Optimized Class A
Scope 1	Fugitive Emissions	9,444	8,489	8,536	8,642
Sci	Fuel Combustion (Boilers, Machines)	4,042	9,452	19,735	8,055

	Scope 1 Total	13,486	17,941	28,270	16,697
7	Electricity Usage	104	112	104	112
Scope 2	Electricity Exported	-100	-107	-100	-107
	Scope 2 Total	3.6	4.4	3.6	4.4
	Polymer Consumption	6,885	9,949	6,885	6,942
oe 3	Natural Gas Use	1,068	1,915	5,213	1,546
Scope 3	Hauling, Transportation, Application	8,467	4,433	924	4,803
	Scope 3 Total	16,421	16,297	13,023	13,290
	Scope 1-3 Total	29910	34242	41297	29992
	Fertilizer Offset	-9,766	-9,694	-6,029	-9,638
Credits	Carbon Sequestration	-52,919	-47,589	-19,410	-47,216
	Pipeline RNG	-31,501	-31,884	-31,501	-33,585
	Credits Total	-94,186	-89,167	-56,940	-90,438
	Total (metric tons CO2e /year)	-64,276	-54,925	-15,643	-60,446
Differe	ence from S1 - Base-case (metric tons CO2e /year)	0	+9,351	+48.632	+3.830

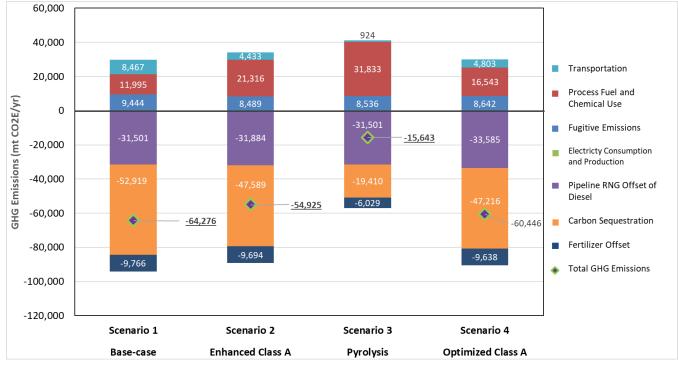
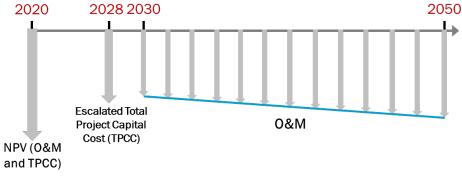
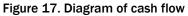


Figure 16. Summary of GHG emissions

(based on 2050 flows and loads)

The results of the GHG inventories showed that Scenario 1: Base-case had the lowest GHG emissions with Scenario 4: Optimized Class A and Scenario 2: Enhanced Class A following closely. Scenario 1: Base-case


Brown AND Caldwell


also had the lowest sum for Scope 1-3 emissions as shown in **Table 13** below. Scenario 3: Pyrolysis had more significant GHG emissions due to the lower carbon sequestration and increase in emissions from process fuel usage. An analysis of biochar's carbon sequestration potential is included in **Section 3.5.8**.

Section 6: Cost Assessment

A simplified 20-year net present value (NPV) was developed for each of the scenarios to account for both the total escalated project capital cost and the operation and maintenance (O&M) costs. The NPV are intended to be used only as comparative costs between alternatives. Salvage and replacement cost were not included. Total project capital cost (TPCC) were escalated to 2028 and discounted back to 2020. The O&M assumed operation from 2030 to 2050 and was escalated based on solids growth projections and then discounted back to 2020 for an NPV. For both capital and O&M costs, the calculations were performed using an escalation rate of 3 percent and a discount rate of 5.25 percent. Escalated TPCCs were provided in **Table 13** below and represent the true TPCC of the project. **The escalated TPCC is a better reflection of the costs that may impact budget, sewer rates, and other planning impacts**. However, future evaluations with more detailed costing will be needed to provide the classification accuracy ranges needed to understand impacts to the program. The sections below discuss these concepts in further detail.

Figure 17 below summarizes the general approach.

6.1 Total Project Capital Costs

Estimated construction costs were developed based on pre-Class 5 AACE International standards for each scenario. These costs were input into the County's cost models to develop TPCC. To reflect the present value of capital cost, project capital cost was escalated to an assumed midpoint of construction of 2028 and then discounted back to 2020. **Table 13** provides a summary of the estimated construction, project capital cost, and escalated and discounted project capital cost. More detailed information on the project capital costs can be found in **Attachment C**.

	Table 13. Summary of Capital Costs (in 2020 \$ millions)								
Scenarios	Facility	Estimated Construction	Total Project Capital Cost	Total Project Capital Cost (Escalated to midpoint 2028)	Total Project Capital Cost (Escalated and Discounted)				
	West Point	\$76	\$142	\$180	\$119				
S1	South Plant	\$44	\$83	\$105	\$70				
	Brightwater	\$20	\$39	\$50	\$33				

Brown AND Caldwell

	Total	\$139	\$264	\$335	\$222
\$2	West Point	\$69	\$129	\$163	\$108
	Soil Blending	\$32	\$58	\$74	\$49
	South Plant	\$292	\$520	\$659	\$438
	Brightwater	\$20	\$39	\$50	\$33
	Composting	\$68	\$120	\$152	\$101
	Total	\$481	\$867	\$1,098	\$729
	West Point	\$76	\$142	\$180	\$119
	South Plant	\$44	\$83	\$105	\$70
53	Brightwater	\$20	\$39	\$50	\$33
	Pyrolysis	\$371	\$617	\$782	\$519
	Total	\$510	\$881	\$1,117	\$741
	West Point	\$69	\$129	\$163	\$108
	Soil Blending	\$32	\$58	\$74	\$49
- 4	South Plant	\$61	\$115	\$146	\$97
54	Brightwater	\$20	\$39	\$50	\$33
	Composting	\$68	\$120	\$152	\$101
	Total	\$250	\$462	\$585	\$388

6.2 Operation and Maintenance Costs

O&M costs were considered over a 20-year period and presented as a net present value. O&M costs were associated only with solids treatment including processing, handling and end-use. These costs considered labor, maintenance and parts replacement, material use, energy consumption, and end-use. Revenues from biosolids product sales, electricity and renewable natural gas were also included. Revenues from the biosolids product sales assumed a stepwise increase. Refer to **Attachment C** for more details. The O&M costs related to labor and parts replacement were built from data provided by the County. O&M costs were escalated based on the discount rate as well as a linear projection of biosolids increase from 2018 to 2050.

Table 14 and **Figure 18** provides details on the biosolids growth projections used for this analysis.**Attachment C** provides more detailed on O&M costs.

Table 14. Summary of Solids Growth									
Parameter	West Point	South Plant	Brightwater	Total					
2018 Dewatered Cake (WT/yr)	49258	64332	15948	129537					
2050 Dewatered Cake (WT/yr)	64784	96279	35998	197061					
2050 Percent of Total	32.9%	48.9%	18.3%	-					
Years	32	32	32	32					
Percent Change	31.5%	49.7%	125.7%	52.1%					
Slope	1.0%	1.6%	3.9%	1.6%					

Brown AND Caldwell

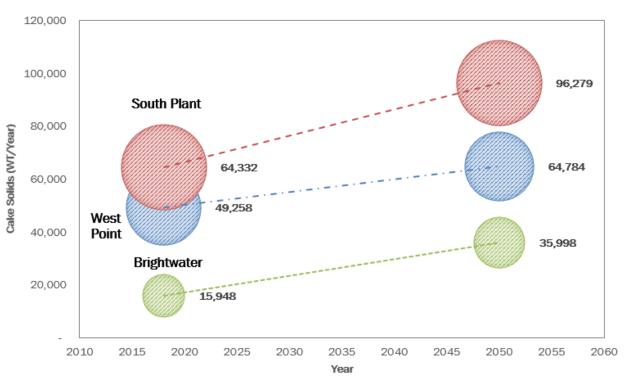


Figure 18. Diagram of solids growth projections

 Table 15 provides a summary of NPV O&M for each scenario.

Table 15. Summary of Net Present Value 0&M and Revenues (in 2020 \$ millions)							
Scenarios	Facility	0&M	Revenues	Total			
	West Point	\$171	(\$20)	\$151			
64	South Plant	\$220	(\$100)	\$120			
S1	Brightwater	\$72	(\$1)	\$71			
	Total	\$463	(\$122)	\$342			
	West Point	\$123	(\$20)	\$103			
	Soil Blending	\$97	(\$29)	\$68			
~~	South Plant	\$262	(\$102)	\$160			
S2	Brightwater	\$48	\$0	\$48			
	Composting	\$73	(\$34)	\$39			
	Total	\$602	(\$184)	\$418			
	West Point	\$122	(\$19)	\$104			
	South Plant	\$149	(\$98)	\$51			
S 3	Brightwater	\$48	\$0	\$48			
	Pyrolysis	\$132	(\$4)	\$127			
	Total	\$451	(\$121)	\$330			
S 4	West Point	\$123	(\$20)	\$103			

Total	\$534	(\$191)	\$344
Composting	\$73	(\$34)	\$39
Brightwater	\$48	\$0	\$48
South Plant	\$194	(\$108)	\$86
Soil Blending	\$97	(\$29)	\$68

Table 16 provides a summary of annual 0&M and revenues presented in 2050 dollars, which reflects the fully operational scenarios and full maturity of the biosolids market/revenues.

Table 16. Summary of 2050 Annual O&M and Revenues (in \$ millions)						
Scenarios	Facility	0&M	Revenues	Total		
	West Point	\$14.3	(\$1.7)	\$12.6		
64	South Plant	\$19.0	(\$8.7)	\$10.3		
\$1	Brightwater	\$6.8	(\$0.1)	\$6.7		
	Total	\$40.1	(\$10.4)	\$29.6		
	West Point	\$10.3	(\$1.7)	\$8.6		
	Soil Blending	\$8.1	(\$3.7)	\$4.4		
	South Plant	\$22.7	(\$8.8)	\$13.8		
S2	Brightwater	\$4.5	\$0.0	\$4.5		
	Composting	\$6.8	(\$4.3)	\$2.5		
	Total	\$52.3	(\$18.5)	\$33.8		
	West Point	\$10.2	(\$1.6)	\$8.7		
	South Plant	\$12.9	(\$8.4)	\$4.4		
S 3	Brightwater	\$4.5	\$0.0	\$4.5		
	Pyrolysis	\$11.4	(\$0.6)	\$10.9		
	Total	\$39.0	(\$10.6)	\$28.4		
	West Point	\$10.3	(\$1.7)	\$8.6		
	Soil Blending	\$8.1	(\$3.7)	\$4.4		
64	South Plant	\$18.9	(\$9.4)	\$9.6		
S 4	Brightwater	\$4.5	\$0.0	\$4.5		
	Composting	\$6.8	(\$4.3)	\$2.5		
	Total	\$48.6	(\$19.0)	\$29.6		

Section 7: Triple Bottom Line

A triple bottom line (TBL) was adapted from the *KC Biosolids Program Strategic Plan 2018-2037* and modified to fit the needs of this study. Four criteria categories were developed: social, environmental, economic, and technical. A detailed description of each of the criteria and more details on the TBL and rationale for rating each criterion and scenario can be found in **Attachment D**.

Each criterion received a raw score between 0 to 5 points. The calculation of the total weighted score can be described by the formula below.

$$Total Weighted Score = \sum \left(Weighting \ x \ \frac{Raw \ Score}{Max \ Possible \ Score} \right)$$

High total weighted scores represent the best scenarios.

7.1 Social and Equity Criteria Category

The social and equity criteria category considered how each scenario could increase or decrease the quality of life of King County residents, taking into account the differing baselines for the communities around South, West Point, and Brightwater Treatment Plants. These criteria were adapted from the County's *The Determinants of Equity Report*. **Table 17** summarizes the scores of the social and equity criteria category.

Table 17. Social and Equity Criteria Category Scoring						
Criterion	Weighting factor	Scenario 1 Base-case	Scenario 2 Enhanced Class A	Scenario 3 Pyrolysis	Scenario 4 Optimized Class A	
Built and Natural Environment						
E1. Noise	2	5	2	3	2	
E2. Odors	3	4	2	2	2	
E3. Traffic	2	4	2	3	2	
E4. Economic Development/Jobs	5	3	4	3	4	
E5. Food Systems	3	3	4	2	4	
Total score (out of 15 point possible)		11	9	8	9	

7.2 Environmental Criteria Category

King County is dedicated to environmental stewardship and has adopted several initiatives to tackle climate change. As part of the *2015 Strategic Climate Action Plan*, the County has committed to meeting countywide GHG emissions reduction targets of 50 percent by 2030 and 80 percent by 2050. Additionally, the KC Wastewater Treatment Department has set a target goal of carbon-neutral operations by 2025. The environmental criteria category takes into consideration these goals and other environmental criteria. **Table 18** summarizes the scores of the environmental criteria category.

Table 18. Environmental Criteria Category Scoring							
Criterion	Weighting factor	Scenario 1 Base-case	Scenario 2 Enhanced Class A	Scenario 3 Pyrolysis	Scenario 4 Optimized Class A		
Sustainability							
C1. Greenhouse Gas Emissions	10	5	4	1	5		
C2. Energy Production/Usage	5	5	3	2	4		
C3. Fossil Fuel Usage	5	5	4	2	5		

C4. 100% Beneficial Reuse Regulatory Compliance	5	3	5	2	5
C5. Flexibility to Meet Future Regulations	5	2	4	5	3
Total score (out of 30 point possible)	25	24	13	27	

7.3 Economic Criteria Category

The economic criteria category considers the capital cost and lifecycle cost of the operation and maintenance of the scenarios. This category also evaluates the long-term sustainability of the biosolids management program in terms of diversification of outlets for biosolids application and risks associated with the single option program. **Table 19** summarizes the scores of the economic criteria category.

Table 19. Economic Criteria Category Scoring						
Criterion	Weighting factor	Scenario 1 Base-case	Scenario 2 Enhanced Class A	Scenario 3 Pyrolysis	Scenario 4 Optimized Class A	
E1. Net Present Value	10	4	2	2	3	
E2. Total Project Capital Cost	5	5	1	1	3	
E3. Market Diversification/Risk	10	2	5	2	5	
Total score (out of 25 point possible)		17	15	9	19	

7.4 Technical Criteria Category

Different technologies offer varying levels of operation, footprints, permitting requirements, and improvements to existing processes. This category considers the technical components of each scenario. **Table 20** summarizes the scores of the technical criteria category.

Table 20. Technical Criteria Category Scoring						
Criterion	Weighting factor	Scenario 1 Base-case	Scenario 2 Enhanced Class A	Scenario 3 Pyrolysis	Scenario 4 Optimized Class A	
T1. Process Reliability	10	5	4	2	5	
T2. Constructability/Footprint	3	3	4	3	5	
T3. Site Permitting	2	5	3	2	3	
T4. Addressing Solids Handling Capacity	5	3	5	3	5	
T5. Compatibility with Capital and Planning Projects	5	4	2	3	3	
T6. Operational Complexity	5	5	2	3	4	
Total score (out of 30 point possible)	1	26	21	16	26	

7.5 TBL Score Summary

The scores for the four criteria categories were combined for the total scores for each scenario. **Table 21** below provides a summary of those scores.

Table 21. Summary of Total TBL Scores							
Criteria Category	Category Weights	Scenario 1 Base-case	Scenario 2 Enhanced Class A	Scenario 3 Pyrolysis	Scenario 4 Optimized Class A		
Social and Equity	15	11	9	8	9		
Environmental	30	25	24	13	27		
Economic	25	17	15	9	19		
Technical	30	26	21	16	26		
Total score (out of 100 points possible)79694681							

The results of the TBL evaluation indicated that Scenario 4: Optimized Class A scored the highest with Scenario 1:Base-case close in score (less than 10 percent difference). Scenario 3: Pyrolysis scored significantly lower for the total score and scored worse in each individual criteria category compared to the other scenarios.

Section 8: Conclusions

The results of the study indicated that Scenario 4: Optimized Class A was the best scenario overall with Scenario 1: Base-case coming close in the TBL analysis. Scenario 4: Optimized Class A had similar scoring in most criteria but had slightly better ratings in the environmental, economic and technical categories. This is largely due to the reduced risk of the program through diversification and the ability to meet future capacity and regulatory concerns. Scenario 2: Enhanced Class A did not score as well due to the complexity and increase processes that were required to get to a Class A program. The cost of the program was also significantly higher compared to Scenario 4: Optimized Class A. Scenario 3: Pyrolysis scored poorly in every category compared to all three other scenarios due to the technical risks, costs, and uncertainty of the biochar market.

Scenario 1: Base-case had the lowest NPV and total project capital cost overall. It also had the best GHG footprint but Scenario 4: Optimized Class A was within 6 percent. However, Scenario 1: Base-case did not score favorably in several criteria due to risks associated with a Class B single market exposure. Scenario 1: Base-case represents the current biosolids management program used by the County which sends more than 70 percent of the biosolids produced to eastern Washington for Class B land application. This program, as reflected in the scoring of the TBL, has significant risks due to the limited diversification of end-uses for the biosolids. Expanding a Class B program into more markets faces significant regulatory, economic and market barriers. Trends in the Class B biosolids market indicate it will only become more difficult in the future. The failure of their only end-use market could result in having to landfill at high cost, currently estimated around \$3 million dollars per month, which could result in regulatory fines and would also result in significant GHG emissions until further beneficial markets could be established.

Scenario 2: Enhanced Class A did not score as well as Scenario 1: Base-case or Scenario 4: Optimized Class A due to the higher cost and complexity of the implementation of the thermal hydrolysis system at South Plant. Changing this technology to a TAD-Batch system resulted in more favorable scores due to the lower cost and greater simplicity of the solution.

Scenario 3: Pyrolysis was scored the lowest and had the second-highest lifecycle cost. The ratings for this scenario suffered from the fact that the technology is new and not fully proven, uses more energy than other options due to the need to dry the biosolids, and had high costs. Pyrolysis and gasification have the potential for applications but they may be limited to situations where other more favorable alternatives are not

36

available. The risk of an undeveloped biochar market also adds to the concern of the potential failure of the biosolids management program.

In this study, the three alternative Scenarios 2, 3, and 4 represent a full conversion to a 100 percent Class A program. An incremental approach or a mixed Class A and Class B program may be more realistic due to reduced costs and the ability to grow investments to match Class A market demand.

This study was intended as a high-level analysis for categories of Class A treatment processes. Once major program directions are established, management approved project(s) would be submitted through the County Wastewater Treatment Division's capital project process where they must compete with other capital projects for prioritization and budget allocation, The capital project process would further optimize and develop the options for each individual plant and potential off-site facilities as required.

Section 9: Sensitivity Discussion

A sensitivity analysis was not a component of the scope for this work; however, this section presents a discussion on variables that could impact the results of the evaluation.

- Gas utilization strategy impacts both the revenues and GHG impacts of any biosolids management
 program. Electric utilities in this region have composite power sources that include a large and growing
 component of low-emissions based electricity generation such as hydro-electric, wind, solar, etc. South
 Plant currently has a purchasing agreement that adds a premium to their electricity rate for sourcing
 their power from renewable energy with PSE that is set to elapse by 2025. If this purchasing agreement
 cannot be renewed, the GHG impact of electricity consumption at South Plant could increase. As utilities
 increase their portfolio of renewable power generation, the net GHG benefit of cogeneration could also
 decrease.
- RINs and LCFS credits for sale of biogas at South Plant are the largest source of revenue and GHG benefit for the County. The RIN and LCFS market are variable and revenues could increase or decrease in the future. In addition, decisions on future gas use at all three plants will change the overall net revenues and benefits. However, this decision is largely independent of Class A decisions as long as the County remains invested in anaerobic digestion as their principal biosolids treatment option.
- GHG carbon sequestration due to biosolids land application ranges and varies based on various characteristics of the soil system to which the biosolids are applied. Values from King County were used and assumed to represent the biosolids applications in this study.
- Biochar carbon sequestration values were based on the assumption that the biochar carbon content was 28.6 percent and that 90 percent of this carbon remained fixed and would not convert to CO₂. No other benefits such as reduced soil emissions were considered.
- The assumption for tipping fees for woodchips and sawdust may impact the overall economic evaluation for composting and soil blending, and this market is variable. The City of Tacoma currently purchases sawdust for soil blending to prevent contamination and to maintain Class A designation. The County may also need to purchase sawdust for soil blending to also prevent contamination. A tipping fee could be used for wood waste from tree disposal and other less controlled sources since composting would allow for the time and temperature requirements for Class A.
- Land application rate and revenues from biosolids products can vary due to variables such as public perception/media, weather, agricultural tariffs, and a change of regulations. This study assumed that application rates and revenues follow typical values.
- Capital costs, the timing of capital investments, and the blend of Class A and Cass B options will impact the overall costs and TBL scores.

References

- Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizábal T, Sigua G, Spokas K, Ippolito JA, Novak J. "Biochar, soil and land-use interactions that reduce nitrate leaching and N₂O emissions: a meta-analysis". Science of the Total Environment. 2019;651:2354– 2364. doi: 10.1016/j.scitotenv.2018.10.060.
- Cayuela, M. L., Jeffery, S., and van Zwieten, L.: "The molar H:Corg ratio of biochar is a key factor in mitigating N20 emissions from soil". Agr. Ecosyst. Environ., 202, 135–138, doi:10.1016/j.agee.2014.12.015, 2015.
- Fidel, Rivka & Laird, David & Parkin, Timothy. "Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales". Soil Systems. 3. 8. 10.3390/soilsystems3010008. 2019.
- Groot, H., Pepke, Ed., Fernholz, K., Henderson, C., Howe, J. "Survey and Analysis of the US Biochar Industry". Dovetail Partners, Inc. WERC project MN17-DG-230. 2018
- IRENA. "Biofuels for aviation: Technology brief, International Renewable Energy Agency, Abu Dhabi". 2017.
- Kimbell, L., Kappell, A., McNamara, P. "Effect of pyrolysis on the removal of antibiotic resistance genes and class 1 integrons from municipal biosolids". Environmental Science: Water Research & Technology, 4, 1807-1818. 2018.
- Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z, Liu G, Ambus P, Xie Z. "How does biochar influence soil N cycle? A meta-analysis". Plant and Soil. 2018;426(1–2):211–225. doi: 10.1007/s11104-018-3619-4.
- Ozaki, N., Nakazato, A., Nakashima, K., Kindaichi, T., & Ohashi, A. (2017). Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge. The Science of the Total Environment, 605–606, 860–866. https://doi.org/10.1016/j.scitotenv.2017.06.165
- Paz-Ferreiro J, Nieto A, Méndez A, Askeland MPJ, Gascó G. Biochar from Biosolids Pyrolysis: A Review. Int J Environ Res Public Health. 2018;15(5):956. Published 2018 May 10. doi:10.3390/ijerph15050956
- Ross J.J., Zitomer, D.H., Miller, T.R., Weirich, C.A., McNamara, P.J. "Emerging investigators series: pyrolysis removes common microconstituents triclocarban, triclosan, and nonylphenol from biosolids". Environ. Sci.: Water Res. Technol (2) 282-289. 2016.
- Semple, K., Reid, B., & Fermor, T. R. (2001). Impact of Composting Strategies on the Treatment of Soils Contaminated with Organic Pollutants. Environmental Pollution (Barking, Essex : 1987), 112, 269– 283. https://doi.org/10.1016/S0269-7491(00)00099-3
- Techsci Research. "Global Biochar Market By Technology (Pyrolysis, Gasification & Hydrothermal Carbonization), By Application (Farming, Livestock Farming & Others), By Region, Competition, Forecast & Opportunities, 2024". 2019.
- USBI. 2018. Council of Western State Foresters Biochar Market Analysis Final Report
- Youngquist, C. P., Mitchell, S. M., & Cogger, C. G. (2016). Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. Journal of Environmental Quality, 45(2), 537–545. https://doi.org/10.2134/jeq2015.05.0256
- Yuan, Haoran & Lu, Tao & Zhao, Dandan & Huang, Hongyu & Kobayashi, Noriyuki & Chen, Yong. "Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis". Journal of Material Cycles and Waste Management. 15. 10.1007/s10163-013-0126-9. 2013.
- Wang, Y., Villamil, M.B., Davidson, P.C., and Akdeniz, N. "A quantitative understanding of the role of cocomposted biochar in plant growth using meta-analysis". Science of The Total Environment, vol. 685, pp. 741-752. 2019.

Attachment A: Solids-Water-Energy Evaluation Tool Design Basis and Assumptions

King County Class A Biosolids Technology Evaluation

Operations and Maintenance Assumptions					
			Value in		
Cost Element	Units	Baseline Value	Model	Notes for Baseline Values	References
		Operation	n Assumptio	ns	
Biogas Utilization					
Gas Upgrading Efficiency (1 - % Methane Loss)	%	90	90		
Methane content Biogas Utilization	%	60	60		
West Point Cogen Usage	%	43.5	43.5		KC Value (2017 - present)
West Point Boiler Usage	%	5.9	5.9		kC Value (2017 - present)
West Point Raw Sewage Pumps Usage	%	8.6	8.6		kC Value (2017 - present)
West Point Waste Gas Burner (Flare) Usage	%	42.0	42.0		kC Value (2017 - present)
South Plant Cogen Usage	%	0.0	0.0		kC Value (2017 - present)
South Plant Boiler Usage	%	0.0	0.0		kC Value (2017 - present)
South Plant Gas Upgrading Usage	%	84.5	84.5		kC Value (2017 - present)
South Plant Waste Gas Burner (Flare) Usage Brightwater Boiler Usage	%	15.5 30.0	15.5 30.0		kC Value (2017 - present)
Brightwater Waste Gas Burner (Flare) Usage	%	70.0	70.0		
West Point Plant Heat Demand (Building + Process)	MMBTU/h	8.500	8.500	Ranges from 4 to 13 MMBTU/h with peak 17.1(2014)	2016 Biogas Op Study
South Plant Heat Demand (Building + Process)	MMBTU/h	12.500	12.500	Ranges from 4 to 13 MMBTU/h with peak 17.6(2014)	2016 Biogas Op Study
Composting/Soll Blending					
Operational Parameters refer to CMPST and Sblend Sheets				Operational Parameters refer to CMPST and Sblend Sheets	Operational Parameters refer to CMPST and Sblend Sheets
Dewatering					
West Point Centrifuge Polymer Use	Ib active/DT	30	30		
South Plant Centrifuge Polymer Use South Plant Centrifuge THP Predewatering Use	Ib active/DT Ib active/DT	35 15	35 15	Assumed Value	
South Plant Centrifuge THP Predewatering Use South Plant Centrifuge THP Cake Solids	ID active/D1	30	30	Assumed Value	
Brightwater Centrifuge Polymer Use	Ib active/DT	35	35	Assumed value	KC Brightwater Treatment System Technical facts and info sheet
Digestion					
West Point Mesophilic digestion VSR	%	64.01	64.01	Average History Data 01/2012-08/2017	
South Plant Mesophilic digestion VSR	%	60.03	60.03	Digester 1-4 - 56.96, Digester 1-5 - 60.03, Average History Data 07/2014-07/2017	
Brightwater Mesophilic digestion VSR	%	60.94	60.94	Average History Data 01/2013-08/2017	
THP-MAD VSR THP-MAD Gas Production	% CF gas/lb VSR-d	62 16.24	62 16.24	Assumed slight boost in VSR Assumed match of existing SP specific gas production	
THP-MAD das Froduction THP-MAD Digester Feed	%	9	9	Assumed from SFPUC	
	70		-	Assumed slight boost in VSR. TAD VSR was similar to MAD. 68 to 74 in coupled thermo-meso (TPAD)	
TAD-Batch VSR West Point	%	68	68	pilot. Full-scale Meso 64-78	1999 pilot study
TAD-Batch VSR West Point	%	64	64	Assumed 4% increase	
TAD-Batch Gas Production	CF gas/lb VSR-d	15	15	Assumed match of existing WP specific gas production	
West Point Mesophilic Gas Production	CF gas/Ib VSR-d	15	15	01/14-01/15 -> 1.5 MSCF/d	
South Plant Mesophilic Gas Production	CF gas/Ib VSR-d	16.24	16.24	Average History Data 07/2014-07/2017	
Brightwater Mesophilic Gas Production West Point LHV	CF gas/Ib VSR-d Btu/scf	16 555	16 555	540-570 calc from 2010-2015	BW Technical Facts document 2016 Biogas Op Study
South Plant LHV	Btu/scf	550	550	500-600	2013 SP Biogas Utilization Study
Brightwater Plant LHV	Btu/scf	550	550	Assumed Similar to WP and SP	
Pyrolysis					
Pyrolysis Temperature	°C	550	550		BFT Biochar Testing Data Sheet
Thermal Drying and Pyrolysis Mass Reduction	%	87.92	87.92		BFT Proposal
Pyrolysis VSR Reduction	%	75.91	75.91	Calculated based on final biochar VS	BFT Biochar Testing Data Sheet
Biochar VS Biochar ASH	%	33.3 64.3	33.3 64.3	Assumed 1 - (Ash and N)	BFT Biochar Testing Data Sheet BFT Biochar Testing Data Sheet
Biochar ASH Biochar N	%	64.3 2.4	2.4		BFT Biochar Testing Data Sheet
Biochar C	%	28.6	2.4		BFT Biochar Testing Data Sheet
Biochar P		20.0	20.0		
Thermal Hydrolysis (CAMBI)					
Steam Requirements	Ib Steam/Ib DS	1.1	1.1	SFPUC and Cambi	
		Cost A	ssumptions		
Biosolids Hauling and Disposal					
Land Application, Cost (Program Average)	\$/WT	\$67.42	\$67	Net program cost (\$8.7M = \$67.42/wt)	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Land Application, Cost (Western WA, Forestry) Land Application, Cost (Eastern WA, Ag)	\$/WT \$/WT	\$71.20 \$62.70	\$71 \$63	Calculated from Program Breakdown (Hauling, fuel, equipment, application, program)	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Land Application, Cost (Eastern WA, Ag) Land Application, Cap Equipment/truck Cost/Yr	\$/WI \$/yr	\$62.70	\$400,000	Calculated from Program Breakdown (Hauling, fuel, equipment, application, program) Cost for capital expense average including truck purchase average from 2013-2018	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Land Application, Cap Equipment/track Cost/11 Land Application, Revenue (Western WA, Forestry)	\$/yr \$/WT	\$400,000.00	\$400,000	204K annual average timber sales (2015-2019)	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Land Application, Revenue (Eastern WA, Ag)	\$/WT	\$1.73	\$1.7	178K Revenue from nitrogen value	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Biosolids Revenue Program Start-up Structure					
Revenue Year 1-2 (Commercial)	%	25	25	Compost and Soil Blend Sales	
Revenue Year 3-8 (Commercial)	%	50	50	Compost and Soil Blend Sales	
Revenue Year 9-14 (Commercial)	%	75	75	Compost and Soil Blend Sales	
Revenue Year 15-20 (Commercial) Revenue Year 1-2 (Consumer)	%	100 15	100 15	Compost and Soil Blend Sales Compost and Soil Blend Sales	
Revenue Year 1-2 (Consumer) Revenue Year 3-8 (Consumer)	%	15 35	15 35	Compost and Soil Blend Sales Compost and Soil Blend Sales	
Revenue Year 3-8 (Consumer) Revenue Year 9-14 (Consumer)	%	35 60	35 60	Compost and Soil Blend Sales	
Revenue Year 15-20 (Consumer)	%	90	90	Compost and Soil Blend Sales	
Chemical Costs					
Polymer Cost	\$/Ib-Active Poly	2.00	2.00		
Composting					
Composting Hauling Fee (Bulk Material) Hauling Fee (Fixed local)	\$/WT \$/WT	\$7.06 \$6.65	\$7.06 \$6.65	Contract fee Contract fee	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019

King County Class A Biosolids Technology Evaluation

Composting Operation Cost	\$/wt Biosolids	\$155.98	\$156	Adjusted by adding two more operators to KC Estimate. Labor, Maintenance, Program op	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Annual Equipment Upgrades	\$/yr	\$80,000.00	\$80,000		
Compost Revenues					
Tipping Fee	\$/WT	\$20.00	\$20.00		King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Bagged Product	\$/CY	\$67.50	\$67.50		King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Bagged Product	\$/2 CF Bag	\$5.00 \$25.00	\$5.00 \$25		King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Bulk Retail Bulk Wholesale	\$/CY \$/CY	\$25.00	\$25		King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Economics	\$/01	\$10.00	\$10		King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
Escalation Rate	%				
Discount Rate (WTB) (Cost of Capital)	%	5.25	5.25		King County Communication, December 2019
Discount Rate (OMB)	%	7	7		King County Communication, December 2019
WTD Real Discounted Rate	%	2.18	2.18		King County Communication, December 2019
Present Worth Comparison	years	20	20		
P:A for 20 years					
Annual Growth in Electricity Consumption	%	1	1		King County Communication, December 2019
Electricity Costs					
Electricity Costs (Average)	\$/kWh	\$0.0745	\$0.0745		
West Point	\$/kWh	\$0.0781	\$0.0781		King County Communication, December 2019
South Plant	\$/kWh	\$0.0758	\$0.0758		King County Communication, December 2019
BrightWater	\$/kWh	\$0.0697	\$0.0697		King County Communication, December 2019
Cogen Electricity Revenues	\$/SCF to Cogen	\$0.0056	\$0.0056	2018 - 223M Biogas SCF/yr ~\$1.25M sale -> 0.005593 \$/SCF to Cogen	King County Communication, KC BiogasData.xlsx, December 2019
Fuel Costs		40.77	44.55		
Diesel	\$/gal	\$3.60	\$3.60	2019 Average	EIA Data Wholesale
Propane	\$/therm	\$0.86	\$0.86	11/26/2018-11/26/2019	EIA Data Wholesale
Propane	\$/gal	\$0.78	\$0.78	11/26/2018-11/26/2019	EIA Data Wholesale
Renewable Natural Price (Sold)	\$/scf Biogas	\$0.0196 \$0.0218	\$0.0196 \$0.0218	SP 2017 and 2018 Average SP 2017 and 2018 Average	King County Communication, KC BiogasData.xlsx, December 2019 King County Communication, KC BiogasData.xlsx, December 2019
Renewable Natural Price (Sold)	\$/scf Scrubbed \$/MMBtu	\$0.0218 \$23.40	\$0.0218		King County Communication, KC BiogasData.xisx, December 2019
RNG RIN Market Price (Current) RNG CA LCFS Market Price (Current)	\$/MMBtu	\$23.40	\$6.21	2014-2019 Median Value	
RIN Premium Allocation	\$/WWBLU	\$0.21 70	\$0.21 70	2019 Average Value	
LCFS Premium Allocation	%	65	65		
NG Market Sale Price (Current)	\$/1000 scf	\$2.70	\$2.70		
NG Market Purchase Price (Current)	\$/1000 scf	\$6.76	\$6.76		EIA, December 2019
NG Market Purchase Price (Current)	\$/MMBtu	\$6.76	\$6.76		EIA, December 2019
Potable Water	¢/ minota	\$0.10	\$0.10		
Potable Water	\$/CCF	5.98	5.98	1 CCF = 748 gal	Seattle Public Utilities Website, December 2019
Pyrolysis					
Hauling Fee (Fixed local)	\$/WT	\$6.65	\$6.65		
Hauling Fee (Biochar)	\$/WT	\$0.0	\$0.0	Bioforcetech's responsibility for hauling, distributing, and selling	Bioforcetech Communication, December 2019
Biochar Value	\$/WT	\$250.0	\$250.0	Bioforcetech's approximate sale value	Bioforcetech Communication, December 2019
KC Share of Biochar Value	%	10	10	Bioforcetech share of profit to KC	Bioforcetech Communication, December 2019
Revenue Year 1-2 (P3 Contract)	%	30	30		
Revenue Year 3-8 (P3 Contract)	%	40	40		
Revenue Year 9-14 (P3 Contract)	%	80	80		
Revenue Year 15-20 (P3 Contract)					
	%	100	100		
O&M Hours	hrs/yr	500	500		
O&M Hours Operation and Maintenance	hrs/yr \$/WT	500 \$15.46	500 \$15.46	6720 000 fer 400 000 WT /// Carled a 000 000 WT ///	
0&M Hours Operation and Maintenance Spare parts and Components	hrs/yr	500	500	\$750,000 for 120,000 WT/yr. Scaled to 200,000 WT/yr	
O&M Hours Operation and Maintenance Spare parts and Components Soli Blending	hrs/yr \$/WT \$/yr	500 \$15.46 \$1,500,000	500 \$15.46 \$1,500,000		Kind County Communication CoursestBendrambudditheonidaum site: December 2010
O&M Hours Operation and Maintenance Spare parts and Components Soll Biending Hauling Fee (Bulk Material)	hrs/yr \$/WT \$/yr \$/WT	500 \$15.46 \$1,500,000 \$7.06	500 \$15.46 \$1,500,000 \$7.06	Contract fee	King County Communication, CurrentProgrambudgetbreakdown.xisx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Fixed local)	hrs/yr \$/WT \$/yr \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65	500 \$15.46 \$1,500,000 \$7.06 \$6.65	Contract fee Contract fee	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
0&M Hours Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Nickel local) Soil Blending Operation Cost	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	
O&M Hours Operation and Maintenance Spare parts and Components Soll Bionding Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soll Biending Operation Cost Sawdust Sawdust	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT \$/WT Biosolids \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29	Contract fee Contract fee	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Sol Blending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soil Blending Operation Cost Sawdust Fine Sand Cost	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
0&M Hours Operation and Maintenance Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Nicked local) Soil Blending Operation Cost Sawdust Fine Sand Cost Soil Blend Revenues	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT \$/WT Biosolids \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020
O&M Hours Operation and Maintenance Spare parts and Components Soli Biending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soli Biending Operation Cost Sawdust Fine Sand Cost Soli Biend Revenues Tipping Fee	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020
0&M Hours Operation and Maintenance Spare parts and Components Sol Blending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soil Blending Operation Cost Sawdust Fine Sand Cost Soil Blend Revenues Tipping Fee Bagged Product	hrs/yr \$/WT \$/yr \$/WT \$/WT Biosolids \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$8.23	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soli Biending Hauling Fee (Bluk Material) Hauling Fee (Bluk Material) Soli Blending Operation Cost Sawdust Fine Sand Cost Soli Blend Revenues Tipping Fee	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020
O&M Hours Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Bulk Material) Soil Blending Operation Cost Sawdust Fine Sand Cost Soil Blend Revenues Tipping Fee Bagged Product Bagged Product	hrs/yr \$/WT \$/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/CY \$/2 CF Bag	500 \$15.46 \$1,500,000 \$56.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soli Biending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soil Biending Operation Cost Sawdust Fine Sand Cost Soil Biend Revenues Tipping Fee Bagged Product Bugker Product Buk Retail	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1.500.000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$20.00	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
0&M Hours Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soil Blending Operation Cost Sawdust Fine Sand Cost Soil Blend Revenues Tipping Fee Bagged Product Bagged Product Bagged Product Bulk Retail Bulk Websale	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$4.00 \$20.00 \$10.00	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20 \$10	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soli Biending Hauling Fee (Bulk Material) Hauling Fee (Bulk Material) Soli Biending Operation Cost Sawdust Fine Sand Cost Soli Biend Revenues Tipping Fee Bagged Product Bagged Product Bulk Retail Bulk Wholesale Textment Plants West Point Operation and Maintenance	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$25.00 \$54.00 \$20.00 \$4.00 \$20.00 \$10.00	500 \$15.46 \$1,500.000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$4.00 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting Assume high quality sawdust needed that is free of seeds and disease	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soli Biending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soli Biending Operation Cost Sawdust Fine Sand Cost Soli Biend Revenues Tipping Fee Bagged Product Bagged Product Bulk Retail Bulk Wholesale Treatment Plants West Point	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$4.00 \$20.00 \$10.00	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20 \$10	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Bulk Material) Hauling Fee (Bulk Material) Soll Blending Operation Cost Sawdust Fine Sand Cost Soll Blend Revenues Tipping Fee Bagged Product Bagged Product Bulk Retail Bulk Wholesale Treatment Plants West Point Operation and Maintenance Additional Operation and Maintenance (THP-MAD) South Plant	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500.000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$20.00 \$20.00 \$10.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00\$\$4.0	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20 \$10 \$10 \$10 \$128 \$6	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting Assume high quality sawdust needed that is free of seeds and disease	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambud
O&M Hours Operation and Maintenance Spare parts and Components Soll Biending Hauling Fee (Rixed local) Soil Biending Operation Cost Sawdust Fine Sand Cost Soil Biend Revenues Tipping Fee Bagged Product Bagged Product Bulk Ketail Bulk Wholesale Testion and Maintenance Additional Operation and Maintenance (THP-MAD) South Plant Operation and Maintenance	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$20.00 \$10.00 \$128 \$20.00 \$10.00 \$128 \$6 \$128 \$6 \$128 \$6	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20 \$10 \$10 \$128 \$6 \$128 \$6 \$128	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting Assume high quality sawdust needed that is free of seeds and disease	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019
O&M Hours Operation and Maintenance Spare parts and Components Soll Blending Hauling Fee (Bulk Material) Hauling Fee (Fixed local) Soil Blending Operation Cost Sawdust Fine Sand Cost Soil Blending Operation Cost Sawdust Fine Sand Cost Soil Blend Revenues Tipping Fee Bagged Product Bulk Retail Bulk Noteisale Treatment Plents West Point Operation and Maintenance Additional Operation and Maintenance Additional Operation and Maintenance Additional Operation and Maintenance Additional Operation and Maintenance	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500.000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$20.00 \$20.00 \$10.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00 \$22.00 \$4.00\$\$4.00	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20 \$10 \$10 \$10 \$128 \$6	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting Assume high quality sawdust needed that is free of seeds and disease	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambud
O&M Hours Operation and Maintenance Spare parts and Components Soll Biending Hauling Fee (Rixed local) Soil Biending Operation Cost Sawdust Fine Sand Cost Soil Biend Revenues Tipping Fee Bagged Product Bagged Product Bulk Ketail Bulk Wholesale Testion and Maintenance Additional Operation and Maintenance (THP-MAD) South Plant Operation and Maintenance	hrs/yr \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT \$/WT	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$20.00 \$10.00 \$128 \$20.00 \$10.00 \$128 \$6 \$128 \$6 \$128 \$6	500 \$15.46 \$1,500,000 \$7.06 \$6.65 \$102.60 \$14.29 \$8.23 \$25.00 \$54.00 \$4.00 \$20 \$10 \$10 \$128 \$6 \$128 \$6 \$128	Contract fee Contract fee Labor, Maintenance, Program op. Reduced based on shared cost with Composting Assume high quality sawdust needed that is free of seeds and disease	King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2020 King County Communication, CurrentProgrambudgetbreakdown.xlsx, December 2019 King County Communication, CurrentProgrambud

King County, Washington

King County Class A Biosolids Technology Evaluation

01	/21	/20	120

HG Emissions Assumption					_
Emissions element	Units	Baseline Value	Value in	Notes for Baseline Values	References
nit Conversions			Model		
1 Btu =	kWh	0.0002928	0.0002928		
1 MMBtu =	kWh	293	293		
1 kg =	lb	2.205	2.205		
1 scf NG=	MMBtu	0.001	0.001	HHV	
1 scf Scrubbed Biogas	MMBtu	0.00099	0.00099		
1 gal Gasoline	MMBtu	0.114	0.114		
1 gal Diesel	MMBtu	0.137381	0.137381		
1 GGE	MMBtu	0.125	0.125		
1 gal =	L	3.785	3.785		
1 tonne (MT) =	kg	1000	1000		
1 scf CH4= 1 scf Natural Gas (Compressed)=	lb Ib	0.042	0.042		Biogas Volume Calculator v2, BEAM, EPA GHG Tool v5
	di	0.0458	0.0458		
obal Warming Potential	kg CO2e/kg CO2e	1	1		IPCC (2014). Climate Change 2014 Synthesis Report Fifth Assessment Report
4	kg CO2e/kg CH4	28	28		IPCC (2014). Climate Change 2014 Synthesis Report Fifth Assessment Report
20	kg C02e/kg N20	265	265		IPCC (2014). Climate Change 2014 Synthesis Report Fifth Assessment Report
octricity					
ghtwater Electricity	kg CO2e/MWh	8.9	8.9	SnoPUD (80% Hydro, <10% Nuclear, 7% Wind)	King County Communication, Sep 2019
uth Plant Electricity	kg CO2e/MWh	0	0	PSE, KC purchasing 100% renewable	King County Communication, Sep 2019.
est Point Electricity	kg CO2e/MWh	6.5	6.5	Seattle City Light (91% Hydro, 4% Nuclear)	King County Communication, Sep 2019
ating					
al	kg CO2e/MMBtu	121	121	Includes production emmissions	Biomass Energy Centre (UK)
al	kg CO2e/MMBtu	104	104	Combustion only (no production)	2015 Climate Registry Table 12
	kg CO2e/MMBtu	92	92	Includes production emmissions	Biomass Energy Centre (UK)
No.2	kg CO2e/MMBtu	74	74	Combustion only (no production)	2015 Climate Registry Table 12
t Gas	kg CO2e/MMBtu	67	67	Includes production emmissions	Biomass Energy Centre (UK)
t Gas	kg CO2e/MMBtu	53	53	Combustion only (no production)	2015 Climate Registry Table 12
ogas	kg CO2e/MMBtu	0	0	Excludes CO2 because biogas is biogenic	2015 Climate Registry Table 12.9.1
emicals		9.00			BEAM default
lymer	kg CO2e/kg polymer		9.00	Emission for use of ploymer	
ne sthanol	kg CO2e/kg lime	0.90	0.90	Emission for use of lime (stabilization)	BEAM default
	kg CO2e/gal methanol	3.71	3.71	Credit for methonal displaced	NY Hunts Pt GHG SWEET model
ansportation Fuels asoline	kg CO2e/L	2.83	2.83	Includes production emmissions	Elsayed et al., 2003
soline	kg CO2e/L kg CO2e/L	2.83	2.83	Includes production emmissions Includes production emmissions	Biomass Energy Centre (UK)
				Combustion only (no production)	
soline esel	kg CO2e/L kg CO2e/L	2.32 3.14	2.32 3.14	Includes production emmissions	2015 Climate Registry Table 13 Biomass Energy Centre (UK)
esel	kg CO2e/L	2.70	2.70	Combustion only (no production)	2015 Climate Registry Table 13
ansportation	Ng COZE/ L	2.70	2.10		2013 Climate Registry Table 13
el for biosolids land application	kg CO2e/WT solids applied	4.55	4.55		BEAM default
				Front End Loader (3.5 gal/hr -> 8 hrs) [4], Vertical/Horiz Aug Mixers (7 gph ->6 hrs) [2], Trommel Screen	
el for Composting Machinery	Gallon/Day	274.00	274.00	(1 gal/hr->6 hrs)[1], Grinder (12 gal/hr -> 6 hrs) [1]	
	0	234.00	234.00	Front End Loader (3.5 gal/hr -> 8 hrs) [3], FEL (3.5 gal/hr -> 4 hrs) [1], Vertical/Horiz Aug Mixers (7 gph -	
el for Soil Blending Machinery	Gallon/Day	234.00	234.00	>6 hrs) [2], Trommel Screen (1 gal/hr->4 hrs)[1], Grinder (12 gal/hr -> 4 hrs) [1]	
C Fuel for Forestry Application	Gallon/WT	0.44	0.44	11,000 gallons of Diesel per 25,000 WT (2018)	King County Communication, Nov 2019
C Fuel for Biosolids Land Application	Gallon/WT	0.32	0.32	33,000 gallons of Diesel per 103,000 WT (2018)	King County Communication, Nov 2019
ssenger Vehicle Mileage	Miles/gallon gasoline	25.00	25.00		https://www.fueleconomy.gov/
cal Distribution Truck (full)	Miles/gallon diesel	6.00	6.00		
cal Distribution Truck (empty)	Miles/gallon diesel	10.00	10.00		
Biosolids Truck Hauling Mileage (full)	Miles/gallon diesel	4.18	4.18		King County Communication, Nov 2019
Biosolids Truck Hauling Mileage (empty)	Miles/gallon diesel	8.00	8.00	Estimated	
Truck Capacity	WT/truck	31.00	31.00		King County Communication, Nov 2019
cal Distribution Truck Capacity	CY/truck	18.00	18.00	15 CY for topsoil and 22 CY for mulch. Assume in between for compost	
cal Compost/Soil Blend Capacity	CY/truck	3.00	3.00		
Insportation (Miles)					
P Transportation to Off-site processing, Roundtrip	Miles	30	30	Distance to off-site composting, soil-blending, or pyrolysis	
edstock (Sand), Roundtrip	Miles	75	75	Average distance to several local bulk aggregate companies	
edstock (Woodchips, Sawdust), Roundtrip	Miles	160	160	Distance From Renton to Hampton Lumber Mills (selected for size via google)	
estern Washington (Foresty/or local agriculture), Roundtrip	Miles	70	70		King County Communication, Nov 2019
stern Washington (Agriculture), Roundtrip cal Application (Compost or local retail), Roundtrip	Miles	420 25	420 25		King County Communication, Nov 2019 King County Communication, Nov 2019
	Miles	25	25		King County Communication, NOV 2019
gional Application (Biochar), Roundtrip d-use	mines	200	200		
enario 1					
ulk Land Application	%		1		
Western Washington Split	%	10	10		
Eastern Washington Split	%	90	90		
enario 2	70	30	50		
Bulk Land Application (South Plant)	WT/Day				
Western Washington Split (100% Forestry)	wi/bay %	40	40		King County Communication, Nov 2019
Eastern Washington Split (100% Porestry)	%	60	60		King County Communication, Nov 2019
coil Blending (West Point)	76 WT/Day	50	00		
Bagged	wi/bay %	20	20		King County Communication, Nov 2019
Donated	%	10	10		King County Communication, Nov 2019 King County Communication, Nov 2019
Bulk Wholesaler	70	40	40		
					King County Communication, Nov 2019
Bulk Retail	%				
Bulk Retail Composting (Brightwater)	% WT/Day	30	30		King County Communication, Nov 2019

King County Class A Biosolids Technology Evaluation

King County, Washington

01	121	/2020	

DescriptionN4060PercentagePe						
Init mini is So So So So Name 3 No So	Donated	%	10	10		King County Communication, Nov 2019
Initial State No. Part State Part State State State Name Address MAD No.	Bulk Wholesaler	%	40	40		
Same 3Same		%				King County Communication, Nov 2019
Index density%100000membra densitymembra densityResponse for the second seco						
NameNomeNomeNomeNomeNomeNomeNomeNomeName </td <td></td> <td>%</td> <td>100</td> <td>100</td> <td></td> <td></td>		%	100	100		
Ningen diad6.6.004.0001.0004.0001.000<			200	200		
Ningle Defa Ma COS Na Na South Ma Cos Na Na South Ma Cos Na Na South Security South Extend South Extend South Extend South Regine and Polycons Offell (grouth) Ma Cos Na South South Sou		٩٤	4.00%	4.00%	%N by dry weight	
magnator10.1.0001.0001.0001.0001.0001.0001.00001.00001.000001.0000001.00000001.000000000000000000000000000000000000						REAM default
Propertion of Mark In Control Propertion IS PP My might End Mark IS PP My might End Ma		Ng COZC/ Ng N applied				DEAM defadat
Tenden Other (Date		/8				
Ningina and Regulation Obster GranupitNing Convert Schwart S		kg CO2e/kg P applied	-2	-2	credit for P applied; can assume 1.5% P by dry weight	BEAM default
Number of Margine and Properson (Mark Concept) Name Product and Properson (Mark Concept) Name Nam Name Name		lur 002a (lur dru biasalda	0.00	0.00	Assigniture 4 E4 (0.00 festilizer effect 4.0E economication of earlier in the soil)	King County Communication December 2010
Name and progenous (bit (bit (bit) bit (bit) bi						
Sequencing (14.0) Loc Joint Control Lock Security (2007) Lock Security (2007) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Inde AgentaKeedbar (Mark Seedbar)Keedbar (Mark Seedbar)BEAM serviceBEAM serviceName RestanceA (2004) (Mark Seedbar)A (3)A (3)A (3)A (3)A (3)Name RestanceA (2004) (Mark Seesbar)A (3)A (3)A (3)A (3)A (3)Name RestanceA (2004) (Mark Seesbar)A (3)A (3)A (3)A (3)A (3)A (3)Name RestanceA (3)A (3)A (3)A (3)A (3)A (3)A (3)A (3)Name RestanceA (3)A (3)A (3)A (3)A (3)A (3)A (3)A (3)Name RestanceA (3)A (3)A (3)A (3)A (3)A (3)A (3)A (3)Name RestanceA (3)A (3)		kg CO2e/ kg dry biosolds	-0.29	-0.29	Compost 0.64 (0.29 fertilizer offset, 0.41 accumulation of carbon in the soil)	King County Communication, December 2019
Mate Association Name Oxa's dy shoulds 0.2.3 0.4.3 0.4.3 0.4.3 0.4.3 Compain Vac Oxa's dy shoulds 0.2.8 0.3.5 0.4.4 0.4.4 0.4.4 0.4.4 0.4.4 0.4.4 0.4.4 0.4.4 0.4.4 0.4.4 0.4.5 0.4.4 0.4.4 0.4.5 0.4.4.4 0.4						
Compact Is Code Value (%) seconds 0.28 0.28 0.28 0.28 0.28 0.28 Status Code Value (%) seconds 0.28 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Solit Bind Inc. GOAC (with Provide) P						
Specification (Sequency) Interval Procession Application (Sequency) Specification (Sequency) <						
Land Agaication Agication () Hg CO20* (g by block) 4.12 Agio Land Construction (Factors Intel Soci) Nage Coanty Commutation, December 2013 Land Agaication (Factors Intel Soci) KG CO20* (G by Soci) 4.1 Construction (Factors Intel Soci) KG CO20* (G by Soci)		kg CO2e/ kg dry biosolds	-0.25	-0.25		BEAM default
Land Agelation Freesry is CODE/Lig day baseds 4. Ferret JL-0. accumulation denome in the solf) Ning Courty Communication, December 2019 Compost MC CODE/Lig day baseds 0.4.1						
CompartMg Conv / g dry Suedies-0.40.4.Compart function of calls on the secondExpanding<						
Shi Berd 1 1 0.41 0.44 0.44 0.44 0.44 0.44 0.44 Digster finds over) of 0.44 polution 0.0001 0.0001 Digster finds over) i, et and i, et and Digster finds over) of 0.44 polution 0.0017 0.0017 Based or 9.016 digster and 4-a mained vir vater bath to skitt i, et and Digster finds over) of 0.44 polution 0.00022 0.000022 Based or 9.016 digster and 4-a mained vir vater bath to skitt i, et and Stade Doring (high 1.4, 1.4) of 0.014 0.001 0.002 Assente 9/0: more more based digster and 4-a mained digster in to our trasment i, et and Stade Doring (high 1.4, 1.4) i, StAL (kinds) 0.014 0.001 Note i, StAL (kinds) i, StAL (kinds) <td< td=""><td>Land Application (Forestry)</td><td></td><td></td><td></td><td></td><td></td></td<>	Land Application (Forestry)					
Paging Findback Degister (find cover)or de CH4 production0.00010.0001Tough pressure relet valve only, 10% gas loss for 10 hm/yrsple stimuteDegister (find circ)of CH4 production0.0170.000220.00022A sume 76% gas in budge for form where digeters in or dor treatmentsple stimuteStudge Devating (by 1, 4.)g CH4/, Liddge0.0580.066A sume 76% gas in budge for form owner/site digeter in or dor treatmentsple stimuteStudge Devating (by 1, 4.)g CH4/, Liddge0.0130.013A sume 76% gas in budge fore form proorby-mixed digeters in or dor treatmentsple stimuteStudge Devating (by 1, 4.)g CH4/, Liddge0.0160.00024A sume 70% gas in budge fore from proorby-mixed digeters in or dor treatmentsple stimuteStudge Devating (by 1, 4.)g CH4/, Liddge0.00140.00014A sume 70% gas in budge fore from proorby-mixed digeters in or dor treatmentsple stimuteStudge Devating (by 1, 4.)g CH4/, Liddge0.000140.00018Nonce 11 si si (A subtre 2013Studge Devating (by 1, 4.)g CH4/, Liddge0.000120.00018Nonce 11 si si (A subtre 2013Cogen (coin panise, bigh eff)g CH4/ to koler0.000120.00018Nonce 11 si si (A subtre 2013Cogen (coin panise, bigh eff)g CH4/ to koler0.000120.00018Nonce 11 si si (A subtre 2013Cogen (coin panise, bigh eff)g CH4/ to koler0.000120.000018Nonce 11 si si (A subtre 2013Cogen (coin panise, bigh eff)g CH4/, Liddge0.00140.0101Nonce 11 si si (A subtre					Compost 0.64 (0.29 fertilizer offset, 0.41 accumulation of carbon in the soil)	King County Communication, December 2019
Digster finding legister findingItem finding legister finding legister finding legister findingStade Dyn legister finding legister findinglegister finding legister finding legister findinglegister finding legister finding legister findinglegister finding legister finding legister findingStade Dyn legister finding legister finding legister findinglegister finding legister finding legister finding legister finding legister findinglegister finding legister finding legister finding legister finding legister finding legister findinglegister finding legister finding 		kg CO2e/ kg dry biosolds	-0.41	-0.41	Assumed same as compost impacts	
Op/Enter (The start) OFM production 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	Fugitive Emissions					
Sindige Deventering (high s.g.) G CH4/L of sludge 0.00002 0.0002 Assume 5% gas in sludge from from well-mixed digestern nod to reatment spic entimate Sludge Deventering with bifter g CH4/L sludge 0.036 Assume 40% removal in long pain: media lasoffler (20% for again in dug for the major) g kestmate: Nikeme stal. 2005 Sludge Dyning g CH4/L sludge 0.01 0.01 With of the majors g kestmate: Nikeme stal. 2005 Sludge Dyning g CH4/L sludge 0.001 0.001 With of the majors g kest L faceboon aft D Sludge Dyning g CH4/L sludge 0.001 0.001 With FTO emission control at 5% slip (Andritz drier) With st d L 2013 Cogen (neign ingle): high aft) d CH4 to engles 0.00248 0.00058 None of the majors With st d L 2013 Cogen (neign ingle): high aft) d CH4 to engles 0.001 None of the memoins enclus back for the major developme of the st on back for the engles 0.001 None of the memoins enclus back for the major developme of the st on back for the engle None of the engles 0.001 None of the engles N	Digester (fixed cover)	of CH4 production	0.0001	0.0001	Through pressure relief valve only; 10% gas loss for 10 hrs/yr	sjk estimate
Studge Develoring (vor 4.5) (c) 4.4.1. studge 0.066 0.066 Assume 20% gas inside from poor/winder digeteer. no odor treatment (c) estimate: Niemane 4.1. 2005 Studge Develoring with boffner (c) 4.4.1. studge 0.0.1.3 Assume 20% gas inside from solowing media boffner (C)% for organic media boffner (C)% for organic media) (c) estimate: Niemane 4.1. 2005 Studge Doying (c) 4.4.1. studge 0.0.001 With RTO mission control: from residual and soluble gas (c) estimate: Niemane 4.1. 2005 Cogen (rec) engine; low eff) (c) 4.4.1. studge 0.0.001 With RTO mission control: from residual and soluble gas Wittie et al. 2013 Cogen (rec) engine; low eff) (c) 4.4.1. studge 0.0.0012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00013 Net residue from residu	Digester (floating cover)	of CH4 production	0.017	0.017	Based on 80-ft dia digester and 4-in annulus w/o water bath for skirt	sjk estimate
Shudge Deventering (low s.g.) g CH4/L shudge 0.086 0.086 Asume 20% gas in sludge from from poorhymed digetter, no odr textment ijk estimate. Shudge Deventering with bolfter g CH4/L shudge 0.013 Asume 20% gas in sludge from readis offer (20% for organizm media to SHI c2%) for organizm media to SHI c2% Cagen (reic) engine; fow eff). of CH4 to engine 0.0001 Will SHI c4 0.001 Will SHI c4 0.001 0.001 None SHI c2% 0.001 Will SHI c4 0.013 0.001 None SHI c2% None SHI c2% <td>Sludge Dewatering (high s.g.)</td> <td>g CH4/L of sludge</td> <td>0.000022</td> <td>0.000022</td> <td>Assume 5% gas in sludge flow from well-mixed digester; no odor treatment</td> <td>sjk estimate</td>	Sludge Dewatering (high s.g.)	g CH4/L of sludge	0.000022	0.000022	Assume 5% gas in sludge flow from well-mixed digester; no odor treatment	sjk estimate
Studge Downsteing with biolitier g CH4/ L slugge 0.0.1 0.0.1 Moute 40% removal in inorgain: emodal is boilt (20% for organic media) sie stimate. Studge Doying g CH4/L slugge 0.0.01 0.0.01 With RT0 emission control is 1% sig (Andritz drier) sie stimate. sie stimate. Studge Doying of CH4 to engine 0.0.0288 0.0.0288 0.0.0288 Will set al. 2013 Cogen (recipe regine: high eff) of CH4 to engine 0.0.0052 0.00012 Will set al. 2013 Storge Turbine, Minorturbine of CH4 to scrubber 0.0.0010 P.A. embediate scrubbers 20% sign off 3% sign		g CH4/L sludge	0.086	0.086	Assume 20% gas in sludge flow from poorly-mixed digester; no odor treatment	sjk estimate
Studge Dyning g CH4/. Istudge 0.01 0.01 Withe RT0 emission control: form residual and soluble gas gikest E. Jacoboon oRT0 Cogen (recip engine: low eff) of CH4 to engine 0.0208 0.0001 Withe RT0 emission control: form residual and soluble gas Withe et al. 2013 Cogen (recip engine: low eff) of CH4 to engine 0.00012 0.00012 Nonest Withe et al. 2013 Cogen (recip engine: low eff) of CH4 to tonine 0.00012 0.00005 Also see "leating (bolier)" abore for atternative CH4 and N20 emission With et al. 2013 Cogen (recip engine: low eff) of CH4 to tonine 0.00015 0.00005 Also see "leating (bolier)" abore for atternative CH4 and N20 emission With et al. 2013 Cogen (recip engine: low eff) of CH4 to tonine 0.0016 0.0016 Nonest abore for atternative CH4 and N20 emission With et al. 2013 Cogen (recip engine: low eff) of CH4 to tonine 0.0016 0.0016 Recip emission enginal and soluble for atternative CH4 and N20 emission With et al. 2013 Cogen (recip engine: low eff) of CH4 to tonine 0.0016 Recip engina enginal with themal oxine Scie gas abore for atternative cH4 and N20 emission			0.013	0.013		sjk estimate: Nikiema et al., 2005
Shudge Dynig g CH4/L sludge 0.0001 With RT0 emission control at 1% slip (Andritz drer) slie t: Lacoban on RT0 Cogen (recipe ng/ms: high eff) of CH4 to ng/me 0.00438 0.000438 Willie et al. 2013 Cogen (recipe ng/ms: high eff) of CH4 to ng/me 0.000438 0.00054 Willie et al. 2013 Solar (very efficient) of CH4 to burlier 0.00012 0.00012 None Willie et al. 2013 Solar (very efficient) of CH4 to burlier 0.00005 Aloa see "Heating (holes")" above for attemative CH4 and N20 emission Willie et al. 2013 Gas upgrading with themal ox of CH4 to scrubber 0.015 None Maint TO Emission entrol 3% slip from themal oxidizer Ern (acobanon Fare (chade stick) of CH4 to tarcei 0.015 None Maint To Emission entrol 3% slip from themal oxidizer Ern (acobanon Fare (chade stick) of CH4 to tarcei 0.016 None Englier generizer and 3% slip from themal oxidizer Ern (acobanon Ern (acobanon Fare (Endles CH0 of CH4 to tarcei 0.016 None Englier generizer and 3% slip from themal oxidizer Ern (acobanon Fare (Endles			0.01	0.01	Without RTO emission control; from residual and soluble gas	sjk estimate
Cogen (recip regine: low eff) of CH4 to engine 0.02088 0.02088 Instrume Wills et al. 2013 Cogen (recip regine: ling) eff) of CH4 to tunkine 0.00012 0.00012 Wills et al. 2013 Cogen (recip regine: ling) eff) of CH4 to tunkine 0.00012 0.00012 Nonone Diper (rev. of ficient) of CH4 to scubber 0.001 Also see "Heating (boilery" above for alternative CH4 an N20 emissions Wills et al. 2013 Gas upgrading with thermal ox of CH4 to scubber 0.001 PA and membrane scrubbers 10% silp and 1% silp from thermal oxidizer Eron Jacobaon Fare (ender of CH4 to fare 0.015 0.015 PA and membrane scrubbers 10% silp and 1% silp from thermal oxidizer Eron Jacobaon Fare (ender of CH4 to fare 0.015 0.016 Regine agas upgrade prior to fuel cell Wills et al. 2013 Fare (enderes flow NO.) of CH4 to fare 0.0003 0.0003 EAM BEAM Data Tables Fare (endoses flow NO.) of CH4 to fare 0.0003 0.001 From residual and soluble gas after dewatering same a drying sijk estimate Land Application (High), K44 g (24/L) studg </td <td></td> <td></td> <td>0.0001</td> <td>0.0001</td> <td>With RTO emission control at 1% slip (Andritz drier)</td> <td>sik est: E. Jacobson on RTO</td>			0.0001	0.0001	With RTO emission control at 1% slip (Andritz drier)	sik est: E. Jacobson on RTO
Open truinby (mine them) of CH4 to unpine 0.00438 <						
Orgen Turkine/Microturbine of CH4 to burbine 0.00012 Pertaining/Microturbine VIIIs et al. 2013 Gas upgrading with themal ox of CH4 to scrubber 0.00015 0.0005 Also see "Heating (boiler)" above for alternative CH4 nN20 emissions Will se tal. 2013 Gas upgrading with themal ox of CH4 to scrubber 0.0015 0.015 Water solvent vol RT0 15% silp and 15% silp from thermal oxidizer Exon Jacobson Faile (call of CH4 to fuel cell 0.0105 0.015 Water solvent vol RT0 15% silp and 15% silp from thermal oxidizer Exon Jacobson Faire (call of CH4 to fuel cell 0.0105 0.0016 Regressing and prior to fuel cell Will se tal. 2013 Faire (call cell of CH4 to faire 0.0004 0.0003 Bosens 3% typically achieve 0.4% BEADmata Tables Faire (enforcesh: tow No.) of CH4 to faire 0.0003 0.0003 From residual and soluble gas after devatering same as drying sik estimate Land Application (High). CH4 (g CH4/L sludge 0.01 No1 From residual and soluble gas after devatering same as drying sik estimate Land Application (Low), X20 kg N20/kg N 0.002 From resi						
Spiler (very efficient) of CH4 to boller 0.00005 Also see "Heating (bioley" above for alternative CH4 and K20 emissions Willis et al. 2013 Gas upgrading with themal ox of CH4 to serubber 0.001 0.001 PA and membane serubbers 00% silp and 1% silp rom themal oxidizer Eron Jacobson Gas upgrading with themal ox of CH4 to bare on the serubber 0.015 Wills et al. 2013 Eron Jacobson Flane (cold of CH4 to finare 0.055 0.005 Reguing supgrade prior to fuel cell Wills et al. 2013 Flane (cold exist) of CH4 to finare 0.005 0.005 exist supprade prior to fuel cell Wills et al. 2013 Flane (cold exist) of CH4 to finare 0.0003 0.0003 exist supprade prior to fuel cell Wills et al. 2013 Frane (cold exist) of CH4 to finare 0.0003 0.0003 exist supprade prior to fuel cell Wills et al. 2013 Frane (cold exist) of CH4 to finare 0.0003 0.0003 Frane residual and soluble gas after dewatering same a drying gik estimate Land Application (High), N20 kg N20/ kg N 0.002 Frane residual and soluble gas after dewatering same a drying gik estima						
loss upgrading with themal axof CH4 to scrubber0.0010.001PA and membrane scrubbers 10% slip and 1% slip from thermal oxidizerEron JacobsonGas upgrading with themal axof CH4 to scrubber0.0150.015Wate solvent wo RT0 15% slipEron JacobsonFuer clailof CH4 to fraice ell0.01050.0156Requires gas upgrade prior to fue cellWillis et al. 2013Flare (claide stick)of CH4 to fraire0.0040.004BC specs 1%; typically achieve 0.4%Sile estimateFlare (fifterient)of CH4 to fraire0.00030.0003EEAM Data TablesFlare (efficient)of CH4 to fraire0.00030.0003Willis et al. 2013Land Application (High), N2Q(g KH4/, lsudge0.01Prom residual and soluble gas after dewatering; same as dryingsik estimateLand Application (Low), X2Q(g KH4/, lsudge0.01Prom residual and soluble gas after dewatering; same as dryingsik estimateLand Application (Low), X2Q(g KH4/, lsudge0.01Prom residual and soluble gas after dewatering; same as dryingsik estimateLand Application (Low), X2Q(g KH4/, lsudge0.01Prom residual and soluble gas after dewatering; same as dryingsik estimateLand Application (Low), X2Q(g KH4/, lsudge0.010.01Prom residual and soluble gas after dewatering; same as dryingsik estimateLand Application (Low), X2Q(g KH4/, lsudge0.010.01N.02From residual and soluble gas after dewatering; same as dryingsik estimateLand Application (Low), X2Q <t< td=""><td></td><td></td><td></td><td></td><td>Also see "Heating (boiler)" above for alternative CH4 and N20 emissions</td><td></td></t<>					Also see "Heating (boiler)" above for alternative CH4 and N20 emissions	
class uggradingof CH4 to scrubber0.0150.015Water solvent w/o RT0 1.5% silpfor 10 acobsonFuel callof CH4 to fale cell0.01050.0105Requires gas uggrade prior to fuel cellWills et al. 2013Flare (andle stick)of CH4 to fare0.050.05Wills et al. 2013Wills et al. 2013Flare (indem enclosed)of CH4 to fare0.0030.003BEAM Data TablesFlare (enclosed; fow NOx)of CH4 to fare0.0030.003Wills et al. 2013Land Application (Hgh), CH4g CH4/, studge0.010.01From residual and soluble gas after dewatering same as dryingsik estimateLand Application (Low, CH4g CH4/, studge0.01From residual and soluble gas after dewatering same as dryingsik estimateLand Application (Low, DH4g CH4/, studge0.01From residual and soluble gas after dewatering same as dryingsik estimateLand Application (Low, DH4g CH4/, studge0.01O.01From residual and soluble gas after dewatering same as dryingsik estimateLand Application (Low, DH4g CH4/, studge0.01O.02Prom residual and soluble gas after dewatering same as dryingsik estimateLandfill (poor capture), CH4 Oxidation0.1O.1From residual and soluble gas after dewatering same as dryingsik estimateLandfill (poor capture), CH4 Oxidation0.10.1Assume 40% additional VSR (sik estimate from Sacramento FSLs)BEAM Data TablesLandfill (poor capture), CH4 Oxidation0.40.4Assume 40% additional VSR (sik est						
ruel cal of CH4 to fuel cell 0.015 0.016 Requires gas uggade prior to fuel cell Wills et al. 2013 Flare (canded stold) of CH4 to flare 0.06 0.05 Wills et al. 2013 Flare (anded stold) of CH4 to flare 0.004 0.004 BC specs 1%; typically achieve 0.4% spic estimate Flare (enfosced, tow NO ₂) of CH4 to flare 0.003 0.0003 0.0003 Land Application (High), CH4 g CH4/L studge 0.01 0.01 From residual and soluble gas after dewatering same as drying spic estimate Land Application (Low), N2O Kg N2O/Kg N 0.002 From residual and soluble gas after dewatering same as drying spic estimate Land Application (Low), N2O Kg N2O/Kg N 0.002 0.002 From residual and soluble gas after dewatering same as drying spic estimate Land Application (Low), N2O Kg N2O/Kg N 0.002 0.002 From residual and soluble gas after dewatering same as drying spic estimate Land Application (Low), N2O Kg N2O/Kg N 0.022 0.22 Assume 40% additional VSR (sjc estimate from Sacramento FSLs) BEAM Data Tables Land Application (Low)						
Ifare (andle stick)of CH4 to flare0.050.050.05Flare (andle stick)of CH4 to flare0.0040.004BC specs 1%; typically achieve 0.4%sjk estimateFlare (efficient)of CH4 to flare0.0030.0003BC specs 1%; typically achieve 0.4%BC specs 1%; typically achieve 0.4%Flare (efficient)of CH4 to flare0.0030.0003BC specs 1%; typically achieve 0.4%BC specs 1%; typically achieve 0.4%Land Application (High), CH4g (EH4/; studge0.010.01From residual and soluble gas after dewatering; same as dryingsjk estimateLand Application (High), N20kg N20 / kg N0.055From residual and soluble gas after dewatering; same as dryingsjk estimateLand Application (Low), CH4g (EH4/; studge0.010.01From residual and soluble gas after dewatering; same as dryingsjk estimateLand Application (Low), N20kg N20 / kg N0.002From residual and soluble gas after dewatering; same as dryingsjk estimateLandfil (good capture), CH4 Ostdation0.10.1Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Ostdation0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Ostdation0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Ostdation0.10.1Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesStudge						
Flare (modern enclosed)of CH4 to flare0.0040.004BC specs 1%; typically achieve 0.4%spik estimateFlare (enclosed; tow NOx)of CH4 to flare0.0030.003BC specs 1%; typically achieve 0.4%BE AM Data TablesLand Application (High), CH4g CH4/L sludge0.010.01From residual and soluble gas after dewatering; same as dryingsjk estimateLand Application (High), N20kg N20/ kg N0.55%0.005From residual and soluble gas after dewatering; same as dryingsjk estimateLand Application (Low), N20kg N20/ kg N0.0020.002From residual and soluble gas after dewatering; same as dryingsjk estimateLandfil (goor capture), CH4 Capture0.20.2Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (goor capture), CH4 Capture0.10.1Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (goor capture), CH4 Capture0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Capture0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Capture0.00.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Capture00Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfil (good capture), CH4 Capture00Assume 40% additional VSR (sjk estimate from Sacrament						
Flare (efficient) of CH4 to flare 0.003 0.003 Description DEAM Data Tables Flare (enclosed; low NOx) of CH4 to flare 0.00003 0.00003 Willis et al. 2013 Land Application (High), N2O g CH4/L sludge 0.01 0.01 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (High), N2O kg N2O/kg N 0.002 0.002 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (Low), N2O kg N2O/kg N 0.002 0.002 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (Low), N2O kg N2O/kg N 0.002 0.002 From residual and soluble gas after dewatering; same as drying sjk estimate Landfill (poor capture), CH4 Codation 0.1 0.1 Assume 40% additional VSR (jk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Codation 0.4 0.4 Assume 40% additional VSR (jk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Coltare 0 0 Assume 40% additional VSR (jk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Coltare 0 0					BC space 1%: typically achieve 0.4%	
Flare (enclosed; low NOx) of CH4 to filare 0.00003 0.00003 Willis et al. 2013 Land Application (High), CH4 g CH4/L sludge 0.01 0.01 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (High), N2O kg N2O/kg N 0.50% 0.006 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (Low), N2O kg N2O/kg N 0.002 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (Low), N2O kg N2O/kg N 0.002 From residual and soluble gas after dewatering; same as drying sjk estimate Land Application (Low), N2O kg N2O/kg N 0.022 0.2 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.1 0.1 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.75 0.75 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation % g CH4/kg Capture 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Ox					Do apola 1/0, typicany admete 0.4/0	
Land Application (High), CH4g CH4/L sludge0.010.01From residual and soluble gas after dewatering: same as dryingsjk estimateLand Application (High), N2Okg N2O/kg N0.05%0.005From residual and soluble gas after dewatering: same as dryingsjk estimateLand Application (Low), CH4g CH4/L sludge0.01From residual and soluble gas after dewatering: same as dryingsjk estimateLand Application (Low), N2Okg N2O/kg N0.0020.002From residual and soluble gas after dewatering: same as dryingsjk estimateLandfill (poor capture), CH4 Capturekg N2O/kg N0.020.002From residual and soluble gas after dewatering: same as dryingsjk estimateLandfill (goor capture), CH4 Coldution0.10.1Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfill (good capture), CH4 Coldution0.10.1Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfill (good capture), CH4 Coldutation0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesSludge Lagoon, CH4 Coldutation0.00Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesSludge Lagoon, CH4 Coldutationkg CH4/kg C dry wt0.010.01Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesCompost (uncovered)kg CH4/kg C dry wt0.010.01Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesCompost (uncovered)kg RC						
Land Application (High) N2Okg N2O/kg N0.50%0.005From residual and soluble gas after dewatering: same as dryingsjk estimateLand Application (Low), N2Okg N2O/kg N0.0020.001From residual and soluble gas after dewatering: same as dryingsjk estimateLand Application (Low), N2Okg N2O/kg N0.0020.002From residual and soluble gas after dewatering: same as dryingsjk estimateLand Application (Low), N2Okg N2O/kg N0.0020.02Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfill (goor capture), CH4 Odation0.10.1Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfill (good capture), CH4 Odation0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfill (good capture), CH4 Odation0.40.4Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesLandfill (good capture), CH4 Odation0.00Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesStudge Lagoon, CH4 Odation0.00Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesStudge Lagoon, CH4 Odationkg CH4/kg C dry wt0.010.01Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesCompost (uncovered)kg CH4/kg C dry wt0.010.01Assume 40% additional VSR (sjk estimate from Sacramento FSLs)BEAM Data TablesCompost (uncovered)kg CH4/kg C dry wt0.013					From residual and coluble day offer downtoring some as draing	
Land Application (Low), CH4 g CH4/L sludge 0.01 0.01 From residual and soluble gas after dewatering: same as drying sike stimate Land Application (Low), N2O Kg N2O/ kg N 0.002 0.002 From residual and soluble gas after dewatering: same as drying sike stimate Landfill (poor capture), CH4 Capture 0.2 0.2 Assume 40% additional VSR (sike stimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Capture 0.1 0.1 Assume 40% additional VSR (sike stimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Capture 0.75 0.75 Assume 40% additional VSR (sike stimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.4 0.4 Assume 40% additional VSR (sike stimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sike stimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg Cdr ywt 0.011 0.01 Assume 40% additional VSR (sike stimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg Cdr ywt 0.013 0.013 0.013 Conta Compost (uncovered) kg CH4/kg Cdry						
Land Application (Low), N2O Kg N2O/ kg N 0.002 0.002 From residual and soluble gas after dewatering: same as drying sjk estimate Landfill (poor capture), CH4 Capture 0.2 0.2 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.1 0.1 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.1 0.1 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.4 0.4 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Studge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 Compost (uncovered) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 Compost (uncovered) BEAM Data Tables <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Landfill (poor capture), CH4 Capture 0.2 0.2 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Capture 0.1 0.1 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Capture 0.75 0.75 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Capture 0.4 0.4 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Capture 0 0.4 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Capture 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Capture 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C vt 0.01 0.01 BEAM Data Tables Compost (uncovered) kg CH4/kg C vt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C vt 0.013 0.013 0.013 BEAM Data Tables Compost (uncovered) <td< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td></td<>						•
Landfill (poor capture), CH4 Oxidation O.1 O.1 Assume 40% additional VSR (sik estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation O.4 O.75 Assume 40% additional VSR (sik estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation O.4 O.4 Assume 40% additional VSR (sik estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Oxidation O O Assume 40% additional VSR (sik estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Oxidation O O Assume 40% additional VSR (sik estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt O.01 O.01 O.01 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt O.01 O.01 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt O.013 O.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt O.006 Assume ave move and in inorganic media biofilter (20% for organic media) gik estimate; Nikiema et al., 2005 Compost (with CN above 30) EXM Data Tables Sublema et al., 2005 Sublema et al., 2005 Soil Blend, N20 <t< td=""><td></td><td>Kg N2U/ Kg N</td><td></td><td></td><td></td><td></td></t<>		Kg N2U/ Kg N				
Landfill (good capture), CH4 Capture 0.75 0.75 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Landfill (good capture), CH4 Oxidation 0.4 0.4 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Studge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Studge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Studge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 Assume as uncovered compost gik estimate tima		1				
Landfill (good capture), CH4 Oxidation O.4 O.4 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 BEAM Data Tables Compost (uncovered) kg N20/kg N dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg N20/kg N dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.014 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.016 0.006 Assume 40% removal in inograin: media biofilier (20% for organic media) sjk estimate; Nikiema et al., 2005 Compost (uncovered) kg CH4/kg dry wt 0.01 0.01 Assume same as uncovered compost sjk estimate Soil Blend, M20 kg CH4/kg dry wti 0.0		l				
Sludge Lagoon, CH4 Capture 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Sludge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 BEAM Data Tables Compost (uncovered) kg N20/kg N dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.006 0.006 Assume 40% removal in inorganic media biofilter (20% for organic media) BEAM Data Tables Compost (uncovered) kg CH4/kg dry wt 0.006 0.006 Assume 40% removal in inorganic media biofilter (20% for organic media) sjk estimate: Nikiema et al., 2005 Compost (with CN above 30) Soil Blend, CH4 kg CH4/kg dry wt 0.013 0.013 Assume same as uncovered compost sjk estimate Soil Blend, N20 kg N20 initial N 0.013 0.013 Assume same sa uncovered compost sjk estimate Soil Blend, KP4 kg dry solida is 0.013 0.013 Assume sare sacrovered compost						
Sludge Lagoon, CH4 Oxidation 0 0 Assume 40% additional VSR (sjk estimate from Sacramento FSLs) BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.013 0.014 BEAM Data Tables Compost (uncovered) kg CH4/kg C dry wt 0.016 Assume 40% removal in inorganic media biofilter (20% for organic media) sjk estimate; Nikiema et al., 2005 Compost (with C-N above 30) No No No No Soil Blend, CH4 kg CH4/kg dry wt 0.01 0.01 Assume same as uncovered compost sjk estimate Soil Blend, N2O kg CH4/kg dry with 0.013 0.013 Assume same as uncovered compost sjk estimate Soil Blend, N2O kg CH4/kg dry with 0.013 Assume same as uncovered compost sjk estimate Soil Blend, N2O kg CH4/kg dry with 0.013						
Compost (uncovered) kg CH4/kg C dry wt 0.01 0.01 0.01 BEAM Data Tables Compost (uncovered) kg N20/kg N dry wt 0.013 0.013 BEAM Data Tables Compost (uncovered with biofiter) kg CH4/kg C dry wt 0.006 0.006 Assume 40% removal in inorganic media biofilter (20% for organic media) gk estimate; Nikiea et al., 2005 Compost (with C:N above 30) Soil Blend, CH4 kg CH4/kg dry wt 0.01 0.01 Assume as uncovered compost sjk estimate sjk estimate Soil Blend, N20 kg N20 intital N 0.013 0.013 Assume same as uncovered compost sjk estimate Soil Blend, N20 kg OH4/kg dry solids 0.000485 0.000485 Assume 20% TS cake BEAM Data Tables						
Compost (uncovered) kg N20/kg N dry wt 0.013 0.013 0.013 0.013 0.013 0.013 BEAM Data Tables Compost (covered with biofilter) kg CH4/kg C dry wt 0.006 Assume 40% removal in inorganic media biofilter (20% for organic media) sjk estimate; Nikiema et al., 2005 Compost (with CX: Babove 30) E E E E Soil Blend, CH4 kg CH4/kg dry wt 0.01 0.01 Assume as uncovered compost sjk estimate Soil Blend, N20 kg N20 initial N 0.013 0.013 Assume same as uncovered compost sjk estimate Soil Blend, N20 kg N20 initial N 0.013 0.013 Assume same sam covered compost sjk estimate Soil Blend, N20 kg N20 initial N 0.013 0.00486 Assumes 20% TS cake BEAM Data Tables			-		Assume 40% additional VSR (sjk estimate from Sacramento FSLs)	
Compost (covered with biofilter) kg CH4/kg C dry wt 0.006 0.006 Assume 40% removal in inorganic media biofilter (20% for organic media) sjk estimate; Nikiema et al., 2005 Compost (with C:N above 30)						
Compost (with C:N above 30) Compost (with C:N above 30) Assume same as uncovered compost Second						
Soil Blend, CH4 kg CH4/kg dry wit 0.01 0.01 Assume same as uncovered compost sjk estimate Soil Blend, N20 kg N02 initial N 0.013 0.013 Assume same as uncovered compost sjk estimate Incineration, CH4 kg CH4/kg dry solids 0.000485 0.000486 Assume same as uncovered compost sjk estimate Incineration, CH4 kg CH4/kg dry solids 0.000486 0.0000486 Assume same as uncovered compost BEAM Data Tables		kg CH4/kg C dry wt	0.006	0.006	Assume 40% removal in inorganic media biofilter (20% for organic media)	sjk estimate; Nikiema et al., 2005
Soil Blend, N20 kg N02 initial N 0.013 0.013 Assume same as uncovered compost sjk estimate Incineration, CH4 kg CH4/ kg dry solids 0.0000485 0.0000485 Assumes 20% TS cake BEAM Data Tables	Compost (with C:N above 30)					
Soil Blend, N2O kg N02 initial N 0.013 0.013 Assume same as uncovered compost sjk estimate Incineration, CH4 kg CH4/kg dry solids 0.0000485 0.0000485 Assumes 20% TS cake BEAM Data Tables	Soil Blend, CH4	kg CH4/kg dry wt	0.01	0.01	Assume same as uncovered compost	sjk estimate
Incineration, CH4 kg CH4/ kg dry solids 0.0000485 0.0000485 Assumes 20% TS cake BEAM Data Tables	Soil Blend, N20		0.013	0.013	Assume same as uncovered compost	sjk estimate
	Incineration, CH4		0.0000485	0.0000485		BEAM Data Tables

King County, Washington

<u>S1 Output Sum</u> Final TS, W NG	/et (WT/D)	0 8706	<u>S</u>	cenario	<u>1 - [Base</u>	line]	<u>100% CI</u>	ass B app	licati	on with N	1AD at all 1	three	<u>plants</u>					
NG (LHV Net heat (Electricity F Power Genera	MMBtu/h) MMBtu/h) Req. (kWh) tion (kWh)	8 11 3138 1760																
No. of Trucks Required (tr Digester Gas Produced Methane Produced Scrubbed Gas	rucks/day) i (scfm)** i (scfm)** s (scfm)**	-1378 19 3325 1995 700																
Polymer Us	west Poi	4611 int																
	Feedst			Stabiliz	zation					Gas Ut	ilization				Dewa	tering	En	d Use
			-												 		 100%	Land Application
Dry Mass Flow TS VS VSR	225860 6.1% 81% 64%	PPD	Dig	gester (Meso)		CHP Engine	909 NG LHV		Boiler	909 NG LHV		Flare		Centrifuge		100295 28.5% 61%	PPD
Calorific Value	10,000 B	Btu/lb VS		VSR	64.0%										92% 29%	Capture TS		
							Therm Eff.	36%		Therm Eff.	85%							
		stock Type PS + WAS					Nat (Biogas Fuel us	•			t gas usage, cfh D e 10%							End Use Land Application
×				65 Op 98 555 15	ige Inlet Temp F beration Temp F Btu/cf cf/lb VS		34%	e Electrical Eff. 6 Heat Recovery 6 MMBtu/hr		2.0	Heat Recovery 2 MMBtu/hr							
	Energy Consump 0 90% E	ption hp Efficiency			hp/unit Efficiency		Energy Const 289 90%	umption hp/unit Efficiency		Energy Cons 40 90%	umption hp/unit Efficiency		Energy Cons 0 90%	umption hp/unit Efficiency		umption hp/unit Efficiency		umption hp/unit Efficiency
			Dut	ty No.	5		Duty No.	1		Duty No.	2		Duty No.	2	Duty No. Polymer Use 30	4 Ibs/DT		
		+					Ø	-0					4	<mark>ک</mark>		••••		
Wet Mass Flow	154,276 9,411	lb/hr lb/hr		149,398 4,533	lb/hr lb/hr		149,398 4,533	lb/hr lb/hr		149,398 4,533	lb/hr lb/hr		149,398 4,533	lb/hr lb/hr	14,663 4,179	lb/hr lb/hr	14,663 4,179	lb/hr lb/hr
Dry Mass Flow	112.9	DTPD		54.4	DTPD		54.4	DTPD		54.4	DTPD		54.4	DTPD	50.1	DTPD	50.1	DTPD
VS Water	7,620 144,865	lb/hr lb/hr		2,743 144,865	lb/hr lb/hr		2,743 144,865	lb/hr lb/hr		2,743 144,865	lb/hr lb/hr		2,743 144,865	lb/hr lb/hr	2,528 10,484	lb/hr lb/hr	2,528 10,484	lb/hr lb/hr
TS VS	6.10% 81%			3.03% 61%			3.03% 61%			3.03% 61%			3.03% 61%		28.50% 61%		28.50% 61%	
VSR	4,878	lb/hr		0	lb/hr		0	lb/hr		0	lb/hr		0	lb/hr	0	lb/hr	0	lb/hr
Wet flow Calorific Value	308.3 10,000 B	gpm Btu/lb VS		298.6 10,000	gpm Btu/lb VS		298.6 10,000	gpm Btu/lb VS		298.6 10,000	gpm Btu/lb VS		298.6 10,000	gpm Btu/lb VS	29.3 10,000	gpm Btu/lb VS	29.3 0.0	gpm Btu/lb VS
Electrical Demand	0.0	kW		149.2	kW		239.7	kW		66.3	kW		0.0	kW	746.0	kW	0.0	kW
Unit Heat Bal. Total Heat Bal.	0 N	MBtu/hr MBtu/hr		-5.85 -5.85	MMBtu/hr MMBtu/hr		6.36 0.50	MMBtu/hr MMBtu/hr		2.02 2.52	MMBtu/hr MMBtu/hr		0.00 2.52	MMBtu/hr MMBtu/hr	0.00 2.52	MMBtu/hr MMBtu/hr	0.00 2.52	MMBtu/hr MMBtu/hr
Unit Aux. Fuel Bal. Cum. Aux. Fuel Bal.		MBtu/hr		0.00	MMBtu/hr MMBtu/hr		0.00	MMBtu/hr MMBtu/hr		0.00	MMBtu/hr MMBtu/hr		0.00	MMBtu/hr MMBtu/hr	0.00	MMBtu/hr MMBtu/hr	0.00	MMBtu/hr MMBtu/hr
Unit Process Fuel Bal.	0 N	MMBtu/hr		40.61	MMBtu/hr		-17.66	MMBtu/hr		-2.38	MMBtu/hr		-20.57	MMBtu/hr	0.00	MMBtu/hr	0.00	MMBtu/hr
Cum Unit Process Fuel Bal. Generated Steam	0 N 0	MBtu/hr Ib/hr		40.61 0	MMBtu/hr lb/hr		22.94 0	MMBtu/hr lb/hr		20.57 0	MMBtu/hr lb/hr		0.00 0	MMBtu/hr lb/hr	0.00 0	MMBtu/hr lb/hr	0.00 0	MMBtu/hr lb/hr
Power Generation	0	MW rucks/day		0.00	MW trucks/dav		1.76	MW trucks/day		0.00	MW trucks/day		0.00	MW trucks/day	0.00	MW trucks/day	0.00	MW trucks/day
No of Trucks Required Vehicle Fuel Consumption	0	gal/day		0	gal/day		0	gal/day		0	gal/day		0	gal/day	0	gal/day	0	gal/day
Digester Gas Produced Methane Production	0	scfm scfm		1219 732	scfm scfm		0	scfm scfm		0	scfm scfm		0	scfm scfm	0	scfm scfm	0 0	scfm scfm
Methane Utilized		scfm scfm		0	scfm scfm		-318	scfm scfm		-43	scfm scfm		-371	scfm scfm	0	scfm scfm	0	scfm scfm
Scrubbed Gas Unit Polymer Use		scfm Ib/day	L	0	scfm Ib/day		0 0	scfm lb/day		0	scfm Ib/day		0	scfm Ib/day	0 1632	scfm Ib/day	0	scfm Ib/day

South Plant

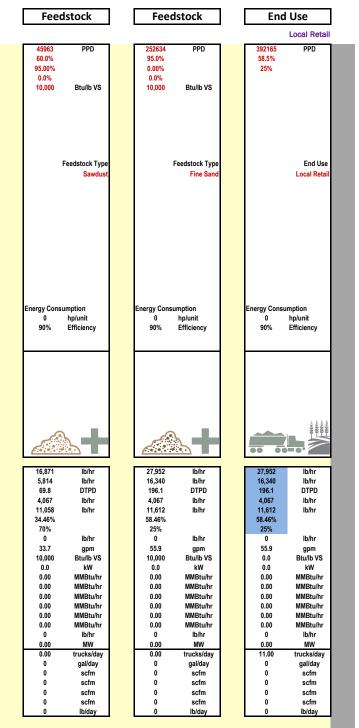
Feedstock	Stabilization		Gas Utiliz	ation		Dewatering	End Use
							100% Land Application
263760 PPD 6.2% 85.88% 60.0% 10,000 Btullb VS	Digester (Meso) VSR 60.0%	CHP Engine 909 NG LHV	909 NG LHV	Biogas Upgrading	Flare	Centrifuge 95% Capture 23% TS	121334 PPD 22.9% 71%
Feedstock Type PS + WAS		Therm Eff. 38% Therm Nat gas usage, cfh Biogas Fuel use 0% Biogas	Nat gas usage, cfh 8,706	Nat gas usage, cfh O Biogas Fuel use 85%			End Use Land Application
Energy Consumption	Sludge Inlet Temp 65 F F Operation Temp 98 F F 550 Bluicf 16.24 cf/lb VS 5.85 MMBBu/hr Energy Consumption	Engine Electrical Eff. 30% Heat Recovery 0.00 MMBtu/hr Energy Consumption Energy	Heat Recovery 6.73 MMBtu/hr	Energy Consumption	Energy Consumption	Energy Consumption	Energy Consumption
0 hp/unit 90% Efficiency	40 hp/unit 100% Efficiency Shell Heat Loss 15% Duty No. 4	145 hp/unit	40 hp/unit 10% Efficiency	738 hp/unit 100% Efficiency Duty No. 1	0 hp/unit 90% Efficiency Duty No. 2	225 hp/unit 90% Efficiency Duty No. 4 Polymer Use 35 lbs/DT	0 hp/unit 90% Efficiency
 +				ſÌ r∃ ⊁	<u> </u>		
177,256 Ubhr 10,990 Ubhr 131.9 Ubhr 16,268 Ubhr 6,20% 5,666 Ubhr 354.2 gpm 10,000 Btulb VS 0.0 KW 0 MMBtuhr 0 MMBtuhr 0 MMBtuhr 0 MMBtuhr 0 MMBtuhr 0 MMBtuhr 0 Ibhr 0 MMBtuhr 0 Ibhr 0 MMBtuhr 0 Ibhr 0 galiday	171,592 Ibhr 5,224 Ibhr 5,234 Ibhr 3,773 Ibhr 166,288 Ibhr 3,10% Ibhr 42.9 gpm 10,000 Bubhr -6,73 MMBuhr 0.00 MMBuhr 0.01 Ibhr 0.02 MMBuhr 0 Ibhr 0.03 MMBuhr 0 Ibhr 0.00 WW 0.00 WW	5.324 Ibhr 5.3 6.39 DTPD 6 3.773 Ibhr 3.6 168,268 Ibhr 16 3.10% Jbhr 16 3.10% Jbhr 16 3.10% Jbhr 16 3.10% Jbhr 10 0.0 Bulb VS 10 0.0 KW 6 -6.7.3 MMBruhr 6 -0.00 MMBruhr 7 0.00 MMBruhr 7 0.00 MMBruhr 5 0 Ibhr 5 0.00 MWBruhr 5 0.00 MWBruhr 5 0.00 MW 0 0.00 MW 0	1,592 Ibhr 3,24 Ibhr 3,39 DTPD 3,39 DTPD 5,268 Ibhr 10% Ibhr 0 Ibhr 0.00 Bulb VS 6.3 kW .00 MMEstuhr .31 MMEstuhr .31 MMEstuhr .00 Ibhr 0.1 Ibhr 0.6 Ibhr 0.6 MW .00 galdsy	171,592 Ibhr 5,324 Ibhr 63,9 DTPD 3,773 Ibhr 165,268 Ibhr 3,10% 0 71% 0 10,000 Btulb VS 550.4 KW 0.00 MMBsuhr 0.00 MMBsuhr 0.00 MMBsuhr 7.31 MMBsuhr 0 Ibhr 0.00 MMBsuhr 0 Ibhr 0.00 MMBsuhr 0 Ibhr 0.00 MWBsuhr 0 Ibhr 0.00 MWBsuhr	171,952 Johr 5,224 Johr 5,23 DTPD 3,773 Johr 166,268 Johr 3,10% John 0,00 MiRLuhr 0,00 John 0,00 John 0,00 John 0,00 John 0,00 John 1,000 John	22,077 Ibhr 50,565 Ibhr 50,7 DTPD 3,583 Ibhr 17,021 Ibhr 22,90% Ibhr 24,90% Ibhr 17,80 Bulh v 10,000 Bulh vS 745.0 KW 0.00 MMBuhr 0.00 MMBuhr	22,077 bb/hr 5,055 bb/hr 3,583 bb/hr 17,021 bb/hr 22,90% 71% 0 bb/hr 44.1 gpm 0.0 Btalb VS 0.0 kW/br 0.0 MMBtal/hr 0.0 MMBtal/hr 0.00 MMBtal/hr 0.00 MMBtal/hr 0.00 MMBtal/hr 0.00 MMBtal/hr 0.00 bb/hr 0.00 bb/hr 0.00 bb/hr
0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	1534 scfm 920 scfm 0 scfm 0 scfm 0 lb/day	0 scfm 0 scfm 0 scfm	0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	0 scfm 0 scfm -778 scfm 700 scfm 0 ib/day	0 scfm 0 scfm -143 scfm 0 scfm 0 lb/day	0 scfm 0 scfm 0 scfm 0 scfm 2236 Ib/day	0 scfm 0 scfm 0 scfm 0 scfm 0 ib/day

Digitwater				
Feedstock	Stabilization	Gas Utilization	Dewatering	End Use
				100% Land Application
93910 PPD 5.8% 90% 61% 10,000 Btu/ib VS	Digester (Meso) VSR 60.9%	Boiler 909 NG LHV	Centrifuge 93% Capture 20% TS	39295 PPD 20.0% 78%
Feedstock Type PS + WAS	V3K 00.375	Therm Eff. 85% Nat gas usage, cfh progas ruer 70%		End Use Land Application
Energy Consumption 0 hplunit 90% Efficiency	Sludge Inlet Temp 65 F Operation Temp 98 F 550 Blu/cf 16 cflib VS 2.23 MMBtu/hr Energy Consumption 40 hplunit 100% Efficiency Shell Heat Loss 15% Duty No. 3	Heat Recovery 11.22 MMBtuhr Energy Consumption 40 hplinit 90% Efficiency Duty No. 1 Duty No. 1	Energy Consumption 200 hptunit 90% Efficiency Duty No. 2 Polymer Use 35 lbs/DT	Energy Consumption 0 hplinit 90% Efficiency
67,464 Ib/hr 3,913 Ib/hr 47.0 DTPD	65,321 Ibhr 1,770 Ibhr 212 DTPD	65,321 Ib/hr 65,321 Ib/hr 1,770 Ib/hr 1,770 Ib/hr 21,2 0TPr 21,2 DTPr	6,186 lb/hr 1,637 lb/hr 19.6 DTPD	8,186 1,637 19,507 19,507 19,507 19,507 19,507 19,507 10 10 10 10 10 10 10 10 10 10 10 10 10
3,517 Ib/hr 63,551 Ib/hr 5.80% 90% 2,143 Ib/hr 134.8 gpm 10,000 Btu/Ib VS 0 kW	1,374 lb/hr 63,551 lb/hr 2,71% 78% 0 lb/hr 130.5 gpm 10,000 Btu/lb VS 89,5 kW	1,374 Iblhr 1,374 Iblhr 63,551 Iblhr 63,551 Iblhr 78% 2,71% 2,71% 78% 78% 78% 0 Iblhr 0 10,000 Bulh VS 10,000 Btulh VS 33,2 kW 0,0 kW	1,271 Ib/hr 6,549 Ib/hr 20.00% 78% 0 10/hr 16.4 gpm 10,000 Btu/lb VS 331.6 KW	1,271 lb/hr 6,549 lb/hr 20.00% 78% 0 lb/hr 16.4 gpm 0.0 Btulib VS 0.0 kW
0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr	03.5 KW -2.56 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 18.86 MMBtu/hr 18.86 MMBtu/hr 18.86 MMBtu/hr 0 Ib/hr 0.00 MW	3.5.4 NW 0.0 KV 11.22 MMBtu/hr 0.00 MMBtu/hr 8.66 MMBtu/hr 0.66 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr -13.20 MMBtu/hr -5.66 MMBtu/hr 5.66 MMBtu/hr -0.00 MMBtu/hr 0 Ib/hr 0 Ib/hr 0 Ib/hr 0 Ib/hr 0.00 MW 0.00 MW	33130 KW 0.00 MMBtu/hr 8.66 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MW	0.0 KV 0.00 MMBtu/hr 8.66 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0 Ib/hr 0 0 MW
0 MW 0.00 trucks/day 0 gal/day 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	0.00 mW 0.00 trucks/day 0 gal/day 571 scfm 343 scfm 0 scfm 0 scfm 0 lb/day	0.00 mw 0.00 mw 0.00 frucks/day 0.00 frucks/day 0 ga/day 0 ga/day 0 scfm 0 scfm 0 scfm -103 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 bl/day 0 ibl/day	0.00 trucks/day 0 gal/day 0 scfm 0 scfm 0 scfm 743 ib/day	0.00 MW 4.00 frucks/day 0 gal/day 0 scfm 0 scfm

Brightwater

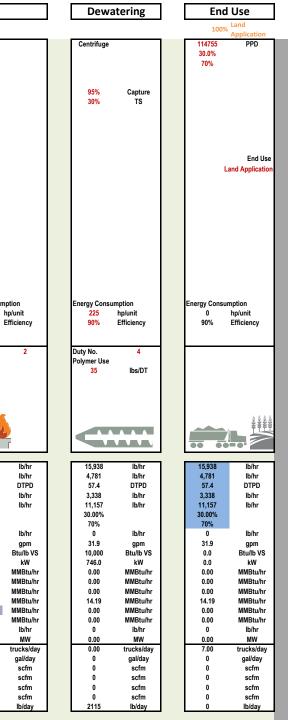
Brown AND Caldwell

King County, Washington


Scenario 2 - TAD with Batch Tanks at West Point to Soil Blending, Cambi at South Plant to direct Land App, and Brightwater with MAD and Off-site Composting.

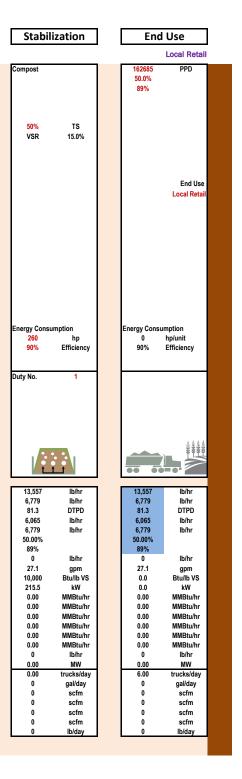
S2 Output Summary	
Final TS, Wet (WT/D)	0
NG Req. (cfh)	15611
NG (LHV MMBtu/h)	14
Net heat (MMBtu/h)	9
Electricity Req. (kWh)	4222
Power Generation (kWh)	1886
Net Power (kWh)	-2336
No. of Trucks Required (trucks/day)	34
Digester Gas Produced (scfm)**	3419
Methane Produced (scfm)**	2052
Scrubbed Gas (scfm)**	708
Polymer Use (Ib/day)	6359

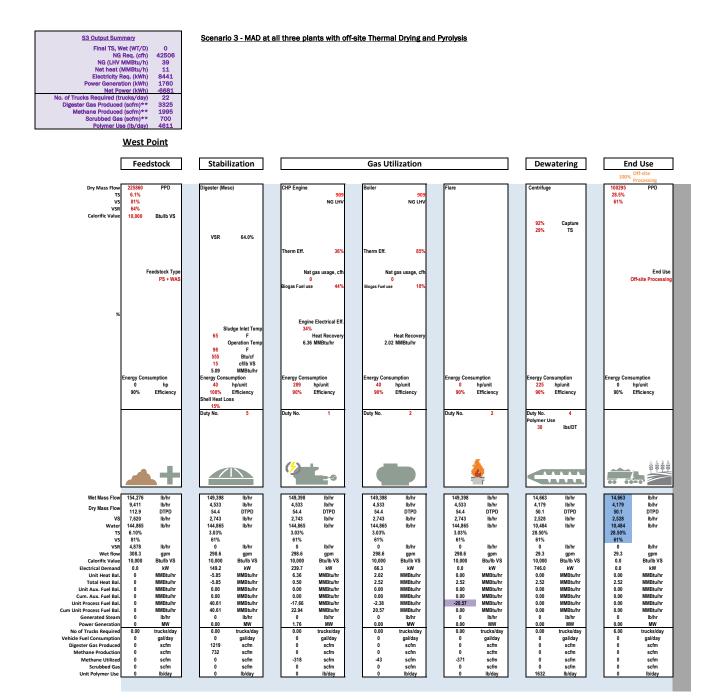
West Point


Off-site Soil Blending

	Feedstock	Stabilization	Energy Recovery		Gas Utilization	Dewatering	End Use	Feedstock
							100% Off-Site Soil Blending	
Dry Mass Flow TS VS VSR Calorific Value	225860 PPD 6.1% 81% 68% 10,000 Btu/lb VS	Digester (Thermo)	HEX	CHP Engine 909 NG LHV	Boiler 909 NG LHV	Centrifuge 92% Capture 29% TS	93568 PPD 28.5% 58%	93568 PPD 28.5% 57.66% 10,000 Btu/lb VS
	Feedstock Type PS + WAS	VSR 68.0%	Inlet Temperature 131 F Outlet Temperature 100 F	Nat gas usage, cfh 0	Therm Eff. 85% Nat gas usage, cfh 0 Biogas Fuel use 10%		End Use Off-Site Soil Blending	Feedstock Type Dewatered Cake
%	Energy Consumption 0 hp 90% Efficiency	Sludge Inlet Temp 65 F Operation Temp 131 F 560 Btu/cf 15 cf/lb VS 10.18 MMBtu/hr Energy Consumption 40 hp	HEX Efficiency 70 % 3.24 MMBtu/hr Energy Consumption 150 hp 90% Efficiency	145 hp/unit	Heat Recovery 2.16 MMBtu/hr Energy Consumption 40 hp/unit 0 hp/u 90% Efficiency 90% Efficiency	init 225 hp/unit	Energy Consumption 0 hp/unit 90% Efficiency	Energy Consumption 0 hp/unit 9% Efficiency
	90% Efficiency	90% Efficiency Shell Heat Loss 15% Duty No. 5	90% Efficiency Duty No. 1	· ·	90% Efficiency 90% Effic Duty No. 2 Duty No.	2 Duty No. 4 Polymer Use 30 lbs/DT		
Wet Mass Flow Dry Mass Flow VS Water TS VS Wet flow Calorific Value Electrical Demand Unit Heat Bal. Unit Aux. Fuel Bal. Unit Aux. Fuel Bal. Cum. Aux. Fuel Bal. Cum. Aux. Fuel Bal. Cum Unit Process Fuel Bal. Generated Steam Power Generation No of Trucks Required Vehicle Fuel Consumption Digester Gas Produced Methane Utilized Methane Utilized Scrubbed Gas Unit Polymer Use	154,276 Ib/hr 9,411 Ib/hr 112.9 DTPD 7,620 Ib/hr 144,865 Ib/hr 6.10% 81% 5,182 Ib/hr 308.3 gpm 10,000 Btu/hb VS 0.0 kW 0 MMBtu/hr 0 MWW 0.00 trucks/day 0 gal/day 0 scfm	149,094 Ib/hr 4,229 Ib/hr 50.7 DTPD 2,439 Ib/hr 144,865 Ib/hr 144,865 Ib/hr 2,84% 58% 0 Ib/hr 27.9 gpm 10,000 Btu/lb VS 165.8 kW -11.71 MMBtu/hr 0.00 MMBtu/hr 43.53 MMBtu/hr 0.00 MBtu/hr 43.53 MMBtu/hr 0.00 trucks/day 0 gal/day 1295 scfm 0 scfm 0 scfm 0 scfm	149,094 Ib/hr 4,229 Ib/hr 50.7 DTPD 2,439 Ib/hr 144,865 Ib/hr 2,84% 58% 0 Ib/hr 297.9 gpm 10,000 Btu/lb VS 124.3 kW 3.24 MMBtu/hr 0.00 MStu/hr 0.00 MW 0.00 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0	149,094 Ib/hr 4,229 Ib/hr 50.7 DTPD 2,439 Ib/hr 144,865 Ib/hr 2,84% 58% 0 Ib/hr 297.9 gpm 10,000 Btu/lb VS 239.7 kW 6.82 MMBtu/hr -1.66 MMBtu/hr 0.00 MMBtu/hr 0.00 MBtu/hr 18.93 MMBtu/hr 0.00 MMBtu/hr 0.33 scfm 0 scfm 0.338 scfm 0 scfm 0 scfm 0 scfm	2,439 lb/hr 2,439 144,865 lb/hr 144,865 2,84% 2,84% 2,84% 58% 2,84% 58% 0 lb/hr 0 2,97.9 gpm 297.9 10,000 Btu/lb VS 10,000 Bt 66.3 kW 0.0 0 2.16 MMBtu/hr 0.00 M 0.00 MMBtu/hr 0.00 M 0.00 MMBtu/hr 0.00 M 2.255 MMBtu/hr 0.00 M 0.00 trucks/day 0.00 m 0 scfm 0 0 m 0 scfm 0 -394	İb/hr 13,680 İb/hr DTPD 46.8 DTPD İb/hr 2,248 İb/hr İb/hr 2,248 İb/hr İb/hr 9,781 İb/hr 2,850% 58% 0 İb/hr 2,73 gpm tulib VS 10,000 Btu/hr MBtu/hr 0.00 MMBtu/hr Jb/hr 0.00 MBtu/hr MBtu/hr 0.00 MMBtu/hr Uo.00 MMBtu/hr 0.00 Bl/hr 0.00 MMBtu/hr Ucos 0 scfm scfm 0 scfm scfm 0 scfm Ib/day 1522 Ib/day	13,680 Ib/hr 3,899 Ib/hr 46.8 DTPD 2,248 Ib/hr 9,781 Ib/hr 28,50% 58% 0 Ib/hr 27.3 gpm 0.0 Btu/lb VS 0.0 Btu/lb VS 0.0 MBtu/hr 0.00 MMBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 Scfm 0 scfm 0 scfm 0 scfm 0 scfm 0	13,680 Ib/hr 3,899 Ib/hr 46.8 DTPD 2,248 Ib/hr 9,781 Ib/hr 2,50% 58% 0 Ib/hr 27.3 gpm 10,000 Btu/hr 0 MBtu/hr 0 MMBtu/hr 0 B/hr 0 Scfm 0 Scfm 0 Scfm 0 scfm 0 scfm 0 scfm 0 scfm

South Plant


Feed	stock			Stabilization				Gas Utili	ization	
263760 6.2% 85.88% 62.0% 10,000	PPD Btu/lb VS	Pre-dewatering 98% Capture	Dilution water	Thermal Hydrolysis	Dilution water	Digester (Meso)	CHP Engine 909 NG LHV	Boiler 909 NG LHV	Biogas Upgrading	Flare
	-eedstock Type PS + WAS	17% TS	lb/day O		lb/day 1305479	VSR 62.0%	Therm Eff. 38% Nat gas usage, cfh 0 Biogas Fuel use 0%	Therm Eff. 85% Nat gas usage, cfh 15,611 Biogas Fuel use 0%	Nat gas usage, cfh O Biogas Fuel use 85%	
Energy Consun 0 90%	nption hp/unit Efficiency	Energy Consumption 150 hp 90% Efficiency	Energy Consumption 0 hp 90% Efficiency	Sludge Inlet Temp 65 F Operation Temp 302 F 11.49 MMBtu/hr Energy Consumption 100 hp 100% Efficiency Shell Heat Loss	Energy Consumption 0 hp 90% Efficiency	Sludge Inlet Temp 65 F Operation Temp 98 F 550 Btu/cf 16.24 cf/lb VS 0.00 MMBtu/hr Energy Consumption 40 hp 100% Efficiency Shell Heat Loss	Engine Electrical Eff. 30% Heat Recovery 0.00 MMBtu/hr Energy Consumption 145 hp/unit 90% Efficiency	Heat Recovery 12.06 MMBtu/hr Energy Consumption 40 hp/unit 90% Efficiency	Energy Consumption 747 hp/unit 100% Efficiency	Energy Consumpti 0 hp/ 90% Effi
	+	Duty No. 4 Polymer Use 15 Ibs/DT		5% Duty No. 3		15% Duty No. 4	Duty No. 0	Duty No. 2	Duty No. 1	Duty No.
177,258 10,990 131,9 9,439 166,268 6,20% 86% 5,852 354,2 10,000 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ib/hr Ib/hr DTPD Ib/hr Ib/hr gpm Btu/lb VS kW MBBtu/hr MMBtu/hr MMBtu/hr MMBtu/hr MMBtu/hr MBtu/hr MBtu/hr Ib/hr MW trucks/day gal/day scfm scfm scfm scfm	65,274 Ib/hr 10,770 Ib/hr 129.2 DTPD 9,250 Ib/hr 54,504 Ib/hr 16,50% 86% 5,735 Ib/hr 130.4 gpm 10,000 Btu/lb VS 497.3 kW 0.00 MMBtu/hr 0.00 fmlbtu/hr 0.00 MMBtu/hr 0.00 fmlbtu/hr 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm <t< td=""><td>65,274 Ib/hr 10,770 Ib/hr 129.2 DTPD 9,250 Ib/hr 16,50% B/hr 130.4 gpm 10,000 Btu/lb VS 0.0 KW 0.00 MMBtu/hr 0.00 MW 0.00 trucks/day 0 scfm 0 <</td><td>65,274 Ib/hr 10,770 Ib/hr 129.2 DTPD 9,250 Ib/hr 54,504 Ib/hr 16,50% 86% 5,735 Ib/hr 130.4 gpm 10,000 Btu/lb VS 223.8 kW -12.07 MMBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MV 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 tb/day</td><td>119,669 lb/hr 10,770 lb/hr 129,2 DTPD 9,250 lb/hr 108,899 lb/hr 9,00% 86% 5,735 lb/hr 239,1 gpm 10,000 Btu/lb VS 0.0 MBtu/hr 0.00 MMBtu/hr 0.00 MStu/hr 0.00 MStu/hr 0.00 MStu/hr 0.00 MStu/hr 0.00 scfm 0 scfm 0 scfm 0 scfm 0 lb/day</td><td>113,934 Ib/hr 5,035 Ib/hr 60.4 DTPD 3,515 Ib/hr 108,899 Ib/hr 4,42% 70% 0 Ib/hr 227.7 gpm 10,000 Btu/lb VS 119.4 kW 0.00 MMBtu/hr -12.06 MMBtu/hr 0.00 MMBtu/hr 51.22 MMBtu/hr 51.22 MMBtu/hr 0 Ib/hr 0.00 MWBtu/hr 51.22 MMBtu/hr 51.22 MMBtu/hr 0 Ib/hr 0.00 ftsz 0 Ib/hr 0 gal/day 1552 scfm 0 scfm 0 scfm 0 scfm</td><td>113,934 lb/hr 5,035 lb/hr 60.4 DTPD 3,515 lb/hr 108,899 lb/hr 4,42% 70% 0 lb/hr 227.7 gpm 10,000 Btu/lb VS 0.0 kW 0.00 MMBtu/hr -12.06 MMBtu/hr 0.00 mWBtu/hr 0 lb/hr 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day</td><td>113,934 Ib/hr 5,035 Ib/hr 60.4 DTPD 3,515 Ib/hr 108,899 Ib/hr 4.42% 70% 0 Ib/hr 227.7 gpm 10,000 Btu/lb VS 66.3 kW 12.06 MMBtu/hr 14.19 MMBtu/hr 14.19 MMBtu/hr 0.00 MMBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MW 0.00 MW 0.00 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm</td><td>113,934 Ib/hr 5,035 Ib/hr 60.4 DTPD 3,515 Ib/hr 108,899 Ib/hr 4,42% 70% 0 Ib/hr 227.7 gpm 10,000 Btu/lb VS 557.1 kW 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 Ib/hr 4.3.29 MMBtu/hr 0.00 Ib/hr 0 Ib/hr 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 Ib/day</td><td>113,934 5,035 60.4 3,515 108,899 4.42% 70% 0 227.7 10,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<>	65,274 Ib/hr 10,770 Ib/hr 129.2 DTPD 9,250 Ib/hr 16,50% B/hr 130.4 gpm 10,000 Btu/lb VS 0.0 KW 0.00 MMBtu/hr 0.00 MW 0.00 trucks/day 0 scfm 0 <	65,274 Ib/hr 10,770 Ib/hr 129.2 DTPD 9,250 Ib/hr 54,504 Ib/hr 16,50% 86% 5,735 Ib/hr 130.4 gpm 10,000 Btu/lb VS 223.8 kW -12.07 MMBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MV 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 tb/day	119,669 lb/hr 10,770 lb/hr 129,2 DTPD 9,250 lb/hr 108,899 lb/hr 9,00% 86% 5,735 lb/hr 239,1 gpm 10,000 Btu/lb VS 0.0 MBtu/hr 0.00 MMBtu/hr 0.00 MStu/hr 0.00 MStu/hr 0.00 MStu/hr 0.00 MStu/hr 0.00 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	113,934 Ib/hr 5,035 Ib/hr 60.4 DTPD 3,515 Ib/hr 108,899 Ib/hr 4,42% 70% 0 Ib/hr 227.7 gpm 10,000 Btu/lb VS 119.4 kW 0.00 MMBtu/hr -12.06 MMBtu/hr 0.00 MMBtu/hr 51.22 MMBtu/hr 51.22 MMBtu/hr 0 Ib/hr 0.00 MWBtu/hr 51.22 MMBtu/hr 51.22 MMBtu/hr 0 Ib/hr 0.00 ftsz 0 Ib/hr 0 gal/day 1552 scfm 0 scfm 0 scfm 0 scfm	113,934 lb/hr 5,035 lb/hr 60.4 DTPD 3,515 lb/hr 108,899 lb/hr 4,42% 70% 0 lb/hr 227.7 gpm 10,000 Btu/lb VS 0.0 kW 0.00 MMBtu/hr -12.06 MMBtu/hr 0.00 mWBtu/hr 0 lb/hr 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	113,934 Ib/hr 5,035 Ib/hr 60.4 DTPD 3,515 Ib/hr 108,899 Ib/hr 4.42% 70% 0 Ib/hr 227.7 gpm 10,000 Btu/lb VS 66.3 kW 12.06 MMBtu/hr 14.19 MMBtu/hr 14.19 MMBtu/hr 0.00 MMBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MWBtu/hr 0.00 MW 0.00 MW 0.00 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	113,934 Ib/hr 5,035 Ib/hr 60.4 DTPD 3,515 Ib/hr 108,899 Ib/hr 4,42% 70% 0 Ib/hr 227.7 gpm 10,000 Btu/lb VS 557.1 kW 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 Ib/hr 4.3.29 MMBtu/hr 0.00 Ib/hr 0 Ib/hr 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 Ib/day	113,934 5,035 60.4 3,515 108,899 4.42% 70% 0 227.7 10,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0

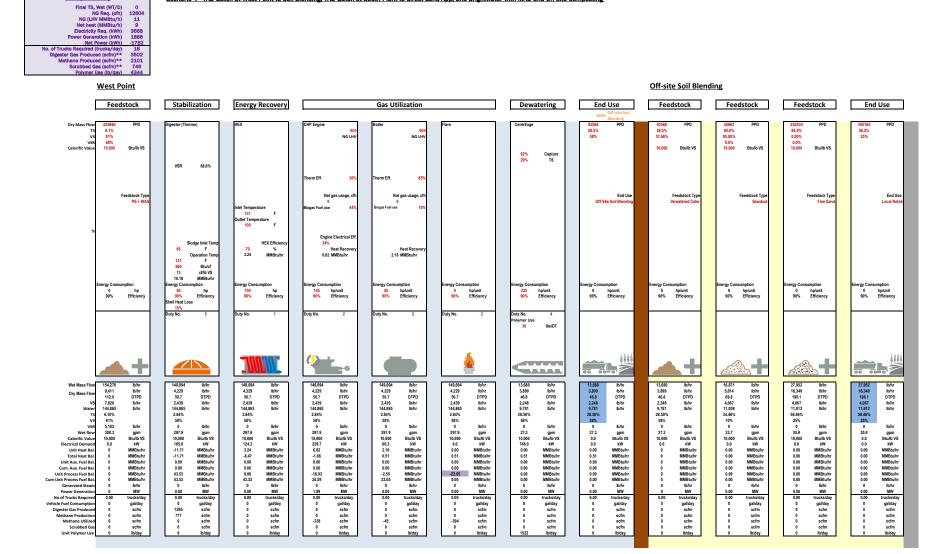


Brightwater

Off-site Composting

Foodatool	Ctabilization	Gas Utilization		Friddlag	F acility of	Foodstool	Faadataala
Feedstock	Stabilization	Gas Offization	Dewatering	End Use	Feedstock	Feedstock	Feedstock
93910 PPD 5.8% 90% 61% 10,000 Btu/lb VS	Digester (Meso) VSR 60.9%	Boiler 909 NG LHV	Centrifuge 93% Capture 20% TS	39295 PPD 20.0% 78%	39295 PPD 20.0% 77.61% 15.0% 10,000 Btu/lb VS	132465 PPD 55.0% 95.00% 15.0% 10,000 Btu/lb VS	16611 PPD 55.0% 89.68% 15.0% 10,000 Btu/lb VS
Feedstock Type PS + WAS		Therm Eff. 85% Nat gas usage, cfh 0 Biogas Fuel use 70%		End Use Land Application	Feedstock Type Dewatered Cake	Feedstock Type Virgin Woodchips	Feedstock Type Screened Overs
Energy Consumption 0 hp/unit 90% Efficiency	Sludge Inlet Temp 65 F Operation Temp 98 F 550 Btu/cf 16 cf/lb VS 2.23 MMBtu/hr Energy Consumption 40 hp/unit 100% Efficiency Shell Heat Loss 15% Duty No. 3	Heat Recovery 11.22 MMBtu/hr Energy Consumption 40 hp/unit 90% Efficiency Duty No. 1 Duty No. 1	Energy Consumption 200 hp/unit 90% Efficiency Duty No. 2 Polymer Use 35 lbs/DT	Energy Consumption 0 hp/unit 90% Efficiency	Energy Consumption 0 hp/unit 90% Efficiency	Energy Consumption 0 hp/unit 90% Efficiency	Energy Consumption 0 hp/unit 90% Efficiency
+					_+		
67,464 Ib/hr 3,913 Ib/hr 47.0 DTPD 3,517 Ib/hr 63,551 Ib/hr 5.80% 90% 2,143 Ib/hr 134.8 gpm 10,000 Btu/lb VS 0 kW 0 MMBtu/hr 0 B/hr 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	65,321 Ib/hr 1,770 Ib/hr 1,770 Ib/hr 1,374 Ib/hr 63,551 Ib/hr 2,71% 78% 0 Ib/hr 130.5 gpm 10,000 Btu/lb VS 89.5 kW -2.56 MMBtu/hr 0.00 MMBtu/hr 18.86 MMBtu/hr 18.86 MMBtu/hr 0 Ib/hr 0.00 MW 0.00 trucks/day 0 gal/day 571 scfm 343 scfm 0 scfm 0 scfm 0 scfm	65,321 ib/hr 1,770 ib/hr 1,770 ib/hr 1,770 ib/hr 1,770 ib/hr 1,770 ib/hr 1,374 ib/hr 1,374 ib/hr 1,374 ib/hr 2,71% 2,71% 78% 78% 0 ib/hr 130.5 gpm 10,000 Btu/lb VS 10,000 Btu/lb VS 10,000 Btu/hr 0.00 MBtu/hr 8.66 MMBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MW 0.00 MW 0.00 fullow 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	8,186 İb/hr 1,637 İb/hr 1,637 İb/hr 1,271 İb/hr 6,549 İb/hr 20.00% 78% 0 İb/hr 16.4 gpm 10,000 Btulib VS 331.6 kW 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MW 0.00 ft 0 scfm 0 scfm 0 scfm 0 scfm 743 Ib/day	8.186 Ib/hr 1,637 Ib/hr 1,637 Ib/hr 1,271 Ib/hr 6,549 Ib/hr 0 Ib/hr 16.4 gpm 0.0 Bt/l/b VS 0.0 Bt/l/b VS 0.0 MBtu/hr 0.00 MMBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MBtu/hr 0.00 MW 0.00 Scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	8,186 Ib/hr 1,637 Ib/hr 1,9.6 DTPD 1,271 Ib/hr 6,549 Ib/hr 20,00% 78% 791 Ib/hr 16.4 gpm 10,000 Btu/lb VS 0.0 kW 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MW 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	18,222 Ib/hr 7,157 Ib/hr 85,9 DTPD 6,514 Ib/hr 11,065 Ib/hr 39,28% 91% 977 Ib/hr 36.4 gpm 10,000 Btu/lb VS 0.0 kW 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MWEtu/hr 0.00 MMBtu/hr 0.00 MWEtu/hr 0.00 MWEtu/hr 0.00 MWEtu/hr 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 Ib/day	19,480 Ib/hr 7,849 Ib/hr 94.2 DTPD 7,135 Ib/hr 11,631 Ib/hr 40,29% 91% 91% 1,070 10,000 Btu/lb VS 0.0 KW 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MV 0.00 MV 0.00 Scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm

South Plant


Feedstock	Stabilization		Gas Utiliz	ation	Dewatering	End Use
						100% Offsite Processing
263760 PPD 6.2% 85.88% 60.0% 10,000 Btu/lb VS	Digester (Meso)	CHP Engine 909 NG LHV	Boiler 909 NG LHV	Biogas Upgrading Flare	Centrifuge	121334 PPD 22.9% 71%
Feedstock Type	VSR 60.0%	Therm Eff. 38% Nat gas usage, cfh	Therm Eff. 85%	Nat gas usage, cfh	95% Capture 23% TS	End Use
PS + WAS	Sludge Inlet Temp 65 F	0 Biogas Fiet use 0% Engine Electrical Eff. 30% Heat Recovery	8,706 Biogas Fuel use 0% Heat Recovery	Blogas Funi use 85%		Offsite Processing
Energy Consumption 0 hp/unit 90% Efficiency	Operation Temp 98 F 50 Blu/of 16.24 c/l/b VS 5.85 MIMBu/l/rr Energy Consumption 40 hp/unit 10% Efficiency Shell Heat Loss 15%	0.00 MMBtuhr Energy Consumption 145 hplunit 90% Efficiency	6.73 MMBtu/hr	738 hp/unit	y Consumption 0 hp/unit 225 hp/unit 0% Efficiency 90% Efficiency	Energy Consumption 0 hp/unit 90% Efficiency
_	Duty No. 4	Duty No. 0	Duty No. 2	Duty No. 1 Duty N	io. 2 Duty No. 4 Polymer Use 35 lbs/DT	
177,258 lb/hr	171,592 lb/hr	171,592 lb/hr	171,592 lb/hr	171,592 lb/hr 171	.592 lbhr 22,077 lb/hr	22,077 lb/hr
10,990 lib/tr 131,9 DTPD 9,439 lib/tr 16,268 lib/tr 6,20% 65% 5,666 lib/tr 354.2 gpm 10,000 Bkul/b V5 0,0 KW 0 MMBul/tr 0 MMBul/tr 0 MMBul/tr 0 MMBul/tr	5.324 Ibl/r 6.39 OTPD 3.773 Ibl/r 166.288 Ibl/r 3.10% 71% 0 Ibl/r 3.42.9 gpm 10.000 Btu/lb V3 10.000 Btu/lb V3 4.673 MMBtu/hr 0.00 MMBtu/hr 5.0.61 MMBtu/hr 5.0.61 MMBtu/hr	5,324 Ibhr 6,3,9 OTPD 3,773 Ibhr 166,288 Ibhr 3,10% 7,1% 0 Ibhr 3,42,9 gpm 10,000 Btu/lb VS 0,0 kW 0,00 kW 0,00 kW 0,00 MMBtu/hr 0,00 MMBtu/hr 0,00 MMBtu/hr	5.324 Bihr 63.9 DTPD 3.773 Bihr 166,288 Bihr 3.10% 71% 0 Bihr 342.9 gpm 10,000 Builb VS 66.3 kW 67.3 MMBsuhr 7.91 MMBsuhr 7.91 MMBsuhr 0.06 MMBsuhr 0.00 MMBsuhr	5.324 Ibihr 5.5 63.9 OTPD 6 3.773 Ibihr 5.6 3.80% 3.1 166,268 3.10% 3.3 3.1 71% 7 3.4 0 Ibihr 3.0 3.42,9 gpm 34 0.000 Mibiuhr 0.0 0.00 Mibiuhr 0.0 0.00 Mibiuhr 0.0 0.00 Mibiuhr 7.7 -7.91 Mibiuhr 7.7 7.84 Mibiuhr 7.0	324 libhr 5,556 libhr 3.9 DTPD 6,7 OTPD 773 libhr 17,021 libhr 12,268 libhr 17,021 libhr 10% 22,00% 71% 0 libhr 0 libhr 0.00 Blulib VS 10,000 Blulib VS 0.00 MBlulib VS 0,000 MMBlulir 0.0 MMBlulir 0,00 MMBlulir 0.0 MMBlulir 0,00 MMBlulir 0.0 MMBlulir 0,00 MMBlulir 0.0 MMBlulir 0,00 MMBlulir 0.0 MMBlulir 0,00 MMBlulir 0.00 MMBlulir 0,00 MMBlulir 0.00 MMBlulir 0,00 MMBlulir	5,056 Ibhr 60,7 DTPD 3,583 Ibhr 17,021 Ibhr 2,290% Ibhr 0 Ibhr 44,1 gpm 0.0 Bluilb VS 0.0 MMBluihr 0.00 MMBluihr 0.00 MMBluihr 0.00 MMBluihr 0.00 MMBluihr
0 lb/hr 0 MW 0.00 trucks/day 0 gal/day 0 scfm 0 scfm 0 scfm 0 lb/day	0 Ibihr 0.00 MW 0.01 trucksiday 0 agi/day 1534 scfm 920 scfm 0 scfm 0 scfm 0 scfm 0 scfm	0 lbhr 0.00 MW 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	0 lb/hr 0.00 MW 0.00 trucks/day 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	0.00 MW 0. 0.00 trucks/day 0. 0 gal/day 0. 0 scfm 0. -778 scfm -1. 700 scfm -1.	0 lbhr 0 lbhr 0 MW 0.0 trucks/day 0 gal/day 0 gal/day 0 scfm 0 scfm 143 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	0 Ibhr 0.00 MW 9.00 trucks/day 0 gal/day 0 scfm 0 scfm 0 scfm 0 scfm

Feedstock	Stabilization	Gas Utilization	Dewatering	End Use
				100% Off-Site Processing
93910 PPD 5.8% 90% 61% 10,000 Btu/lb VS	Digester (Meso) VSR 60.9%	Boiler 909 NG LHV	Centrifuge 93% Capture 20% TS	39295 PPD 20.0% 78%
Feedstock Type PS + WAS	VSK 00.9%	Therm Eff. 85% Nat gas usage, cfh progas ruen 9 70%		End Use Off-Site Processing
Energy Consumption 0 hplunit 90% Efficiency	Studge Iniet Temp 65 F Operation Temp 98 F 550 Bluef 150 Bluef 123 MMBbuhr Energy Consumption 40 hplunit 100% Efficiency Shell Heat Loss 15%	Heat Recovery 11.22 MMBtwhr Energy Consumption 40 hplunit 90% Efficiency 90% Efficiency	Energy Consumption 200 hp/unit 90% Efficiency	Energy Consumption 0 hp/unit 90% Efficiency
_+	Duty No. 3	Duty No. 1	Duty No. 2 Polymer Use 35 Ibs/DT	
67,464 lb/hr 3,913 lb/hr 47.0 DTPD 3,551 lb/hr 63,551 lb/hr 5.80% 90% 2,143 lb/hr	65,321 lb/hr 1,770 lb/hr 21.2 DTPD 1,374 lb/hr 63,551 lb/hr 2,71% 78% 0 lb/hr	65,321 Ib/hr 65,321 Ib/hr 1,770 Ib/hr 1,770 Ib/hr 21,2 DTPD 21,2 DTPD 3,374 Ib/hr 1,374 Ib/hr 63,551 Ib/hr 63,551 Ib/hr 2,71% 2,71% 78% 78% 0 Ib/hr 0 Ib/hr	8,186 ib/hr 1,637 ib/hr 19,6 DTPD 1,271 ib/hr 6,549 ib/hr 20,00% 78% 0 ib/hr	8,186 Ib/hr 1,637 Ib/hr 19.6 DTPD 1,271 Ib/hr 6,549 Ib/hr 20.00% 78% 0 Ib/hr
134.8 gpm 10,000 Btu/lb VS 0 kW 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr 0 MMBtu/hr	130.5 gpm 10,000 Btu/lb VS 89.5 kW -2.56 MMBtu/hr -2.56 MMBtu/hr 0.00 MMBtu/hr 18.86 MMBtu/hr 18.86 MMBtu/hr	130.5 gpm 130.5 gpm 10,000 Blulb VS 10,000 Blulb VS 33.2 kW 0.0 kW 11.2 MMBuhr 0.00 MMBuhr 8.66 MMBuhr 0.60 MMBuhr 0.00 MMBuhr 0.60 MMBuhr 0.00 MMBuhr 0.66 MMBuhr 5.66 MMBuhr 5.66 MMBuhr	16.4 gpm 10,000 Btulb VS 331.6 kW 0.00 MMBtulhr 0.00 MMBtulhr 0.00 MMBtulhr 0.00 MMBtulhr 0.00 MMBtulhr	C gpm 16.4 gpm 0.0 Btu/b VS 0.0 kW 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr 0.00 MMBtu/hr
0 minitoti in 0 lb/hr 0 MW 0 gal/day 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	0.000 Ib/hr 0.00 Ib/hr 0.00 trucks/day 0 gal/day 571 scfm 343 scfm 0 scfm 0 scfm 0 scfm 0 scfm	0 mith/r 0 mb/r 0.00 MW 0.00 MW 0.00 trucksiday 0.00 trucksiday 0 gal/day 0 gal/day 0 scfm 0 scfm -240 scfm -103 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	0.00 million 0.00 MW 0.00 fruckiday 0 gal/day 0 scfm 0 scfm 0 scfm 743 lb/day	0.00 MW 4.00 Trucks/day 0 gal/day 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day

Brightwater

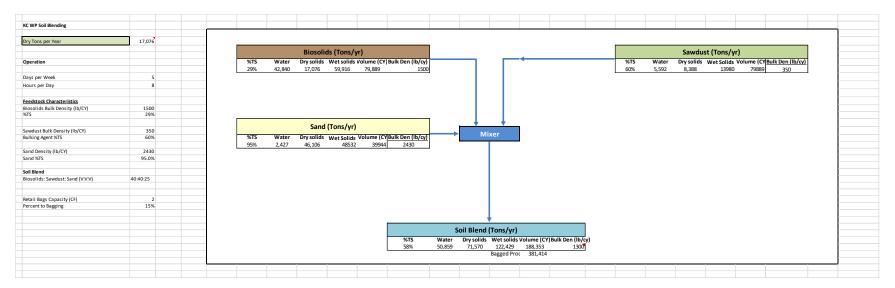
Feedstock	Drying a	nd Pyrolysis	Gas Utilization	End Use
				100% Contracte
260925 PPD	Thermal Dryer	Pyrolysis	Boiler	125590 PPD
24.6%	909		909	100.0%
67.9%	NG LHV		NG LHV	0%
2%				
10,000 Btu/lb VS				
	00.0V T0			
	90.0% TS			
		Therm Eff. 50%	Therm Eff. 85%	
Feedstock Type	Nat gas usage, cfh		Nat gas usage, cfh	End
PS + WAS	0 Diugas ruei 0%		33,799 Biogas Fuel use 0%	Contracte
	0%		Biogas Fuel use 0%	
	Inlet / Out Temp.			
	60 F	Heat Recovery	Heat Recovery	
	300 F	21.29 MMBtu/hr	26.12 MMBtu/hr	
	300 F	Enthalpy 5.84 MMBtu/hr		
	1,400 Btu/lb	5.64 MMB(U/III		
	45.15 MMBtu/hr			
Energy Consumption	Energy Consumption	Energy Consumption	Energy Consumption	Energy Consumption
0 hp/unit	339 hp/unit	94 hp/unit	40 hp/unit	0 hp/unit
90% Efficiency	90% Efficiency	90% Efficiency	90% Efficiency	90% Efficiency
	Heat Loss			
	5%			
	Duty No. 12	Duty No. 24	Duty No. 2	
		Temp (*C) 550		
_				23
44,166 lb/hr	11,916 lb/hr	5,233 lb/hr	5,233 lb/hr	5,233 lb/hr
10,872 lb/hr	10,724 lb/hr	5,233 lb/hr	5,233 lb/hr	5,233 lb/hr
130.5 DTPD	128.7 DTPD	62.8 DTPD	62.8 DTPD	62.8 DTPD
7,382 lb/hr	7,234 lb/hr	1,743 lb/hr	1,743 lb/hr	0 lb/hr
33,294 lb/hr	1,192 lb/hr	0 lb/hr	0 lb/hr	0 lb/hr
24.62% 68%	90.00% 67%	100.00% 33.3%	100.00% 33%	100.00%
68% 148 lb/hr	67% 0 lb/hr	33.3% 0 lb/hr	33% 0 lb/hr	0% 0 lb/hr
148 Ib/hr 88.3 gpm	23.8 gpm	10.5 gpm	10.5 gpm	10.5 gpm
10,000 Btu/lb VS	10,000 Btu/lb VS	10,000 Btu/lb VS	10.00 Btu/lb VS	0.0 Btu/lb V
0 kW	3366.9 kW	1870.0 kW	66.3 kW	0.0 kW
0 MMBtu/hr	-47.41 MMBtu/hr	21.29 MMBtu/hr	26.12 MMBtu/hr	0.00 MMBtu/
0 MMBtu/hr	-47.41 MMBtu/hr	-26.12 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/
0 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/hr	30.72 MMBtu/hr	0.00 MMBtu/
0 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/hr	30.72 MMBtu/hr	30.72 MMBtu/
0 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/
0 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/hr	0.00 MMBtu/
0 lb/hr 0 MW	0 lb/hr 0.00 MW	0 lb/hr 0.00 MW	0 lb/hr 0.00 MW	0 lb/hr 0.00 MW
0 MW 0.00 trucks/day	0.00 MW 0.00 trucks/day	0.00 MW 0.00 trucks/day	0.00 MW 0.00 trucks/day	3.00 MW
0 gal/day	0 gal/day	0 gal/day	0 gal/day	0 gal/day
0 scfm	0 scfm	0 ganday 0 scfm	0 scfm	0 scfm
0 scfm	0 scfm	0 scfm	0 scfm	0 scfm
0 scfm	0 scfm	0 scfm	0 scfm	0 scfm
0 scfm	0 scfm	0 scfm	0 scfm	0 scfm
0 lb/day	0 lb/day	0 lb/day	0 lb/day	0 lb/day

S4 Output Summary

King County, Washington

Scenario 4 - TAD-Batch at West Point to Soil Blending, TAD-Batch at South Plant to direct Land App, and Brightwater with MAD and Off-site Composting.

South	Plant	


Feedstock	Stabilization Ene	ergy Recovery	Gas Utilization	Dewatering	End Use					
recustoen				Denatering	100% Land					
263760 PPD 6.2% 85.88% 64.0% 10,000 Btullb VS	Digester (Thermo) HEX	CHP Engine 905 NG LHV	Boller Biogas Upgrading 909 NG LHV	Flare Centrifuge	re					
Feedstock Type PS + WAS	1	Temperature Eff. 35% Nati gas usage, cft 131 F 131 F Kemperature 0%	Therm Eff. 85% Nat gas usage, ch Nat gas usage, ch 12,554 9 Bogas Faulus 9% Bogas Faulus 85%	23% 15	End Use Land Application					
	1 Sludge Iniet Temp 65 F 7 Operation Tem 36 560 Bruict 16.24 cfth VS 11.70 MMBtullyr	100 F HEX Efficiency 70 % 372 MMBtuhr 0.00 MMBtuhr	Hast Recovery 9.74 MMBluftr							
Energy Consumption 0 hp/unit 90% Efficiency	40 hp 1 90% Efficiency 9 Shell Heat Loss 15%	gy Consumption Energy Consumption 150 hp 145 hplunit 90% Efficiency 90% Efficiency	Energy Consumption 40 hp/unit 90% Efficiency 100% Efficiency	Energy Consumption 0 hplunit 90% Efficiency Efficiency 0 bplunit 90% Efficiency	Energy Consumption 0 hplunit 90% Efficiency					
+	Duty No. 4 Duty N	No. 1 Duty No. 0	Dary No. 2 Dary No. 1	Duty No. 2 Duty No. 4 Polymer Use 33 BaD						
177,258 lb/hr 10,990 lb/hr 131.9 DTPD 9,439 lb/hr 166,268 lb/hr 6,20% 86%	4,949 Ibhr 4, 99.4 DTPD 5 3,398 Ibhr 3, 166,268 Ibhr 166 2,89% 2,1 69% 6	77,217 Ibhr 17,217 Ibhr 4,849 b.hr 4,949 b.hr 58.4 DTPD 59.4 DTPD 3,386 b.hr 3,386 b.hr 6,628 b.hr 166,6286 b.hr 2,85% 65% 65% 65%	177,217 Buhr 177,217 Buhr 4,949 Buhr 4,949 Buhr 59.4 DTPO 59.4 DTPO 3,388 Buhr 3,388 Buhr 166,658 Buhr 166,269 Buhr 2,89% 69% 69% 69%	171.217 Ibhr 20,523 Ibhr 4,549 Ibhr 4,750 Ibhr 58.4 DTPD 56.4 DTPC 3,388 Ibhr 3,227 Ibhr 166,268 Ibhr 1,523 Ibhr 2,89% 69% 69% 69%	4,700 Ibihr 56.4 DTPD 3,227 Ibihr 15,823 Ibihr 22,90% 69%					
6,041 Libhr 354.2 gpm 10,000 Btulls VS 0.0 kW 0 MMBtulhr 0 MMBtulhr 0 MMBtulhr 0 MMBtulhr 0 MMBtulhr	342.2 gpm 34 10,000 Brulls VS 10 132.6 kW 12 -13.45 MMBtuhr 3 -13.45 MMBtuhr -9 0.00 MMBtuhr 0 0.00 MMBtuhr 0 0.40 MMBtuhr 0	0 Bhr 0 Bhr 322.2 gpm 342.2 gpm 100.00 Btub VS 10.00.00 Btub VS 123.3 kW 0.0 MW 372 MMBtubr -0.00 MMBtubr -374 MMBtubr -0.00 MMBtubr 0.00 MMBtubr -0.00 MMBtubr 0.00 MMBtubr 0.00 MMBtubr 0.00 MMBtubr 0.00 MMBtubr 0.44 MMBtubr 0.00 MMBtubr	0 Bhr 0 Bhr 3422 gpm 3422 gpm 10,000 Bruith VS 10,000 Bruith VS 56,3 MW 58,8 MW 57.4 MMBuhr 0.00 MMBuhr 11,66 MMBuhr 0.00 MMBuhr 11,46 MMBuhr 0.00 MMBuhr 0.00 MMBuhr 14,64 MMBuhr 54,54 MMBuhr 6.22 MMBuhr	0 Ibhr 0 Bhr 342.2 gpm 41.9 gpm 10,000 Bluib VS 10,000 Bluib VS 0.0 KW 745.0 KW 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr 0.0 MMEtuhr 0.00 MMEtuhr	41.0 gpm VS 0.0 Btuilb VS 0.0 kW NMBtuilhr hr 0.00 MMBtuilhr r 0 MW 0.00 trucks/day 0 gs/day 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 lb/day	0.00 MW 0 0.00 trucksiday 0 0 galiday 0 1635 scfm 981 0 scfm 0 0 scfm 0	0 bhr 0 lbhr 0.0 MW 0.00 MW 0.00 truckskigy 0.00 truckskigy 0 opkidky 0.00 truckskigy 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn 0 schn	0 lbhr 0 bhr 0.00 WW 0.00 truckstday 0.00 truckstday 0.00 truckstday 0 galday 0 galday 0 schn 0 schn 0 schn - schn 0 schn - schn 0 schn - schn 0 schn - schn 0 schn - schn 0 schn - schn 0 schn - schn 0 bday 0 bday	0 lbhr 0 lbhr 0.00 MW 0.00 WW 0.00 trucksiday 0.00 trucksiday 0 galday 0.00 scin 0 0 galday 0 galday 0 galday 0 scin 0 scin 0 scin 152 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin 0 scin	0.00 MW 8.00 trucks/day y 0 gal/day 0 scfm 0 0 scfm 0 0 scfm 0 0 scfm 0

Brightwater				Off-site Composting	
Feedstock	Stabilization	Gas Utilization	Dewatering End Use	Feedstock Feedstock	Feedstock Stabilization End Use
93910 PPD 5.8% 90% 61% 10,000 Btulls VS	Digester (Meso) VSR 60.9%	Boter 900 NG LHV Therm Eft. 85%	Applic	1000 30205 PPD 20,0% 55,0% 77.21% 12,4% 12,0% 10,000 Blulls VS 10,000 Blulls VS	16611 PPD Compost 162685 PPD 53.0%, 93.45%, 13.0% 50.0%, 19,000 50.0%, 99%, 19,000 50%, VSR 15.0%, 15.0%,
Feedstock Type PS + WAS		Nat gas usage, cfh 0 Biogas Fuelose 70%	E Land App	d Use Feeddock Type Feeddock Type Dewstered Cale Virgin Woodchips	Feedblock Type End Use Screened Overs Local Retail
Energy Consumption 0 bplont 90% Efficiency	Studge Inlet Temp 6 r 9 Operating Temp 9 Store 16 Celb VS 2.23 MMBluhr Energy Consumption 40 bytest Entitiency Stell Heat Los 194 Los 194 No. 3	Hest Recovery 11.22 MMBurlt Energy Consumption 40 Aplunit 90% Efficiency Duty No. 1 Duty No. 1	Energy Consumption 200 hptimit 95% Efficiency Duty No. 2 Polymer Use 35 ba/DT	cy Energy Consumption 0 bplant 90% Efficiency 90% Efficiency	Energy Consumption 0 hplanit 9% Efficiency Day No. 1 Energy Consumption 0 hplanit 9% Efficiency Day No. 1
+					
67.64 bbr 3.013 DTPO 3.17 DTPO 3.57 DTPO 3.57 bbr 5.80% b0% 2.143 bbr 13.48 gem 0 MMBubr 0 MMBubr 0 MMBubr 0 MMBubr 0 MMBubr 0 MMBubr 0 MMBubr 0 Babr 0 bbr 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm 0 scfm	55.321 Bhhr 1.13 Bhhr 1.14 Bhhr 1.15 Bhhr 1.14 Bhhr 5.351 Bhhr 2.11% Bhhr 1.0.15 gm 1.0.05 gm 1.0.05 gm 1.0.06 Buble VS 0.0 MMBluhr 2.85 MMBluhr 0.00 MMBluhr 0.86 MMBluhr 0.86 MMBluhr 0.87 Bubr VS 0.08 MMBluhr 0.38 Gubr VS 0.41 Statistry 0.87 ecfm 0.80 acfm 0 acfm 0 acfm	65,321 Buhr 65,321 Buhr 1,77 DPD 1,73 Buhr 1,72 DPD 1,73 Buhr 1,73 Buhr 1,74 Buhr 1,74 Buhr 1,74 Buhr 1,74 Buhr 6,351 Buhr 2,715 2,715 2,715 2,715 78% 0 Buhr 0 Buhr 10,000 Buhr 1,93 gpm 1,93 gpm 10,000 Buhr 0 Buhr 0,85 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 MMBuhr 0,00 0,00	5.85 b/b 5.85 b/b 1,55 b/b 5,54 b/b 5,549 b/b 5,549 b/b 20,075 20,0075 785 0 10,000 B/b/b 16,4 gpm 16,4 gpm 16,4 gpm 16,4 gpm 16,4 gpm 16,000 B/b/b 20,0075 20,0075 20,007 20,007 20,007 0,00 16,4 gpm 16,4 gpm 16,000 B/b/b/b 0,00 MMB:buhr 0,00 MMB:buhr 0,00 MMB:buhr 0,00 MMB:buhr 0,00 B/b 0,00 b/b/b 0,00 mMB:buhr 0,00 b/b 0,00 b/b/b 0,00 scfm 0 scfm <td>PD 11.6 DTPD B5.9 DTPD vv 1.21 b.bhr 6.514 b.hr 1.065 b.hr v 1.20 V.V 9.0 1.065 b.hr v 1.20 V.V 9.0 V.V 9.0 V.V 0.0 W.V 0.0 M.W 0</td> <td>19.640 Bahr 13.577 Bahr 6.773 Bahr 6.733 Bahr 7.133 Bahr 6.753 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 5.775 Bahr 5.773 <td< td=""></td<></td>	PD 11.6 DTPD B5.9 DTPD vv 1.21 b.bhr 6.514 b.hr 1.065 b.hr v 1.20 V.V 9.0 1.065 b.hr v 1.20 V.V 9.0 V.V 9.0 V.V 0.0 W.V 0.0 M.W 0	19.640 Bahr 13.577 Bahr 6.773 Bahr 6.733 Bahr 7.133 Bahr 6.753 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 6.773 Bahr 5.775 Bahr 5.773 <td< td=""></td<>

01/21/2020

KC Brightwater Biosolids Production																						
Dry Tons per Year	7.171																					
%TS	20%					11.1.7	1.			1												
					Bios	olids (Ton	s/yr)					• • •										
Operation			Bulk Den (lb/ 1300	%TS 20%	Water 28.685	VS 5.566	Dry solids 7.171	Wet solids 35.857	Volume (CY) 55.164			Grin	ider	1			·	Bulking Ag	gent (Ton	s/yr)		
Days per Week	5		1300	2076	28,085	3,300	7,171	33,637	33,104						%TS	Water	vs	Dry solids	ws	Solver WS	Volume (CY)	Bulk Den (lb/cy)
Hours per Day	8									•					55%	19,779	22966	24,175	43954	43954	195352	450
eedstock Characteristics										IVI	ixer											
Biosolids Bulk Density (Ib/CY)	1300																					
Biosolids VS	78%			%TS	Water	VS	Dry solids	Wet solids	Volume (CY)			Bulk Density (lb/cy)									
Bulking Agent Bulk Density (Ib/CY)	350			40.03%	51,496	31,251	34,378	85,874	143,123			1200										
Bulking Agent %TS	55%						90.9%	5			+											
Bulking Agent %VS	95%							VSR	4	Dh	ase 1		Water									
Screened Overs %TS	60%							2,031		Ph	ase 1		10,591									
Screened Overs %VS	89.7%																					
Screened Overs Bulk Density (Ib/CY)	800			%TS	Water	VS	Dry solids		Volume (CY)			Bulk Density (
				44%	40,906	29,219	32,346	73,252	146504			1000										
Aerated Static Pile Parameters									-		*	_		_			-					
Bulk to Biosolids Ratio (V:V)	3.9							VSR		Ph	ase 2		Water			-	-					
ulk to Biosolids Ratio (M:M)	1.2							1,354	4		_		3,530									
ssumed total solids loss thru phases 1 and 2	8%			%TS			Deventida	Mat call da	Values (CV)		-	Dull Danster	1-1-1		-							
Curing loss thru phase 3 Compost Mixture %TS	40%			45%	Water 37.376	VS	Dry solids 30.992	68.368	Volume (CY) 151928			Bulk Density (900				-	-					
ompost Mixture %IS creen %TS Requirement	40%			45%	37,370	27,665	30,992	08,308	101928	-	1	900			-	-	-					
creenings Recycled	10%		-					VSR	1.	_	×		Water			-						
inal Compost %TS	50%		4					677	-	Ph	ase 3		7,060			-	-			-		
									-		1	-	.,			-						
			posted		%TS	Water	vs	Dry solids	Wet solids	Volume (CY	1	Bulk Density (lb/cv)		-			-				
Final Compost Parameters		Materi	al Storage		50%	30,315	27,188	30,315		13473		900										
Carbon of Biosolids	25.3%					Reduction	87.0%				1					1						
Nitrogen of Biosolids	3.0%		1						1		+											
Carbon of Woodchips	45.0%									C -1					0.		()					
Nitrogen of Woodchips	0.8%									SC	reen				00	ers (Tons	/yr)					
Carbon of Yardwaste	44.5%				Finished	Compost	(Tons /um)						%TS	Water	VS	Dry solids	Wet solids	Volume (CY)	Bulk Den (lb/	(cy)		
Nitrogen of Yardwaste	2.0%				rinsned	-							50%	3,032	2719	3,032	6,063	22047				
Carbon of Recycle	25%		%TS	Water	VS		Wet solids	Volume (CY)	Bulk Density	(lb/cy)												
Nitrogen of Recycle	1.00%		50%	27,284	24,469		54,567	145512														
					VS (%)																	
Carbon:Nitrogen	31.5				89.7%						_	_										
etail Bags Capacity (CF)	2											-										
Percent to Bagging	15%		-								-											
ercent to bagging	1076								-													
			-							-	-				-	-						
			-							-	-				-	-	-					
											-				-	-						+
			-												-		-	-				

Equipment Sizing							
Equipment	Manufacturer	Capacity (CF/batch)	Real Capacity (CY/batch)	Batches per Hour	Throughput (CY/Day)	Required Volume Mixed (CY/Day)	Number of Equipment (N+1)
Vertical Mixer	ECS/Lucknow 2295	1100	28.5	4	798.5	550	2
Equipment	Manufacturer	Capacity (CF/hr)	Real Capacity (CY/hr)	Batches per Hour	Throughput (CY/Day)	Required Throughput (CY/Day)	Number of Equipment
Screen	MultiStar L3 Type	8825	261	N/A	1830	518	1
Equipment	Manufacturer	Capacity (CF/bag)	Real Capacity (CF/bag)	Bags per Hour	Throughput (Bags/Day)	Required Throughput (Bags/Day)	Number of Equipment
Bagging Equipment	RotoChopper Go-Bagger 250	2	2	250	1750	1133	1

Equipment Sizi	g							
Equipment	Manufacturer	Capacity (CF/batch)	Real Capacity (CY/batch	Batches per Hour	Throughput (CY/Day)	Required Volume Mixed (CY/Day)	Number of Equipment (N+1)	
Horizontal Mix	r RotoMix 1220-20	1220	31.6	4	885.6	768	2	
Equipment	Manufacturer	Capacity (CF/hr)	Real Capacity (CY/hr)	Batches per Hour	Throughput (CY/Day)	Required Throughput (CY/Day)	Number of Equipment	
Screen	MultiStar L3 Type	8825	261	N/A	1830	724	1	Compost Screener can be used as redundant unit
Equipment	Manufacturer	Capacity (CF/bag)	Real Capacity (CF/bag)	Bags per Hour	Throughput (Bags/Day	Required Throughput (Bags/Day)	Number of Equipment	
Bagging Equips	ent RotoChopper Go-Bagger 250	2	2	250	1750	1467	1	

Biochar Carbon Sequestration

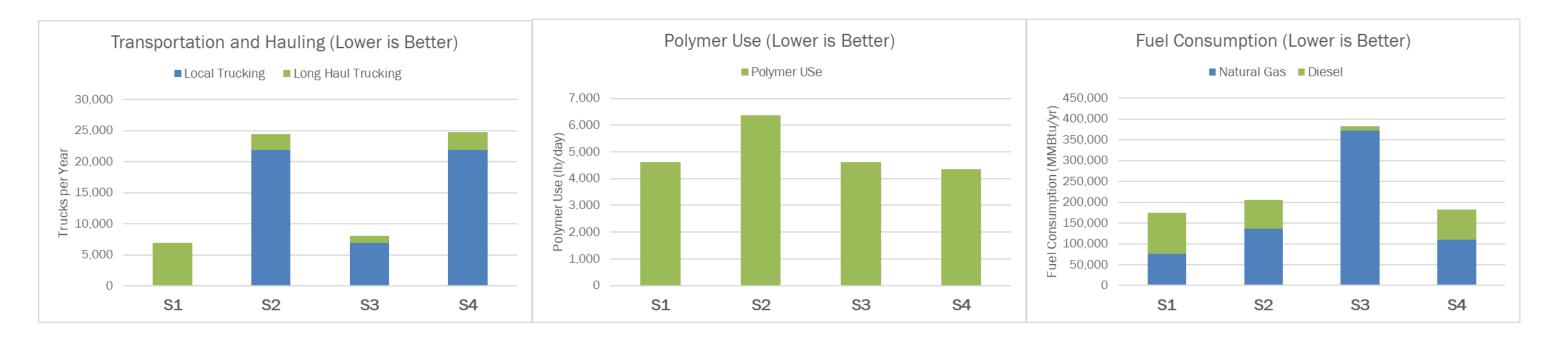
$$22,920 \frac{DT}{yr} Biochar \times 28.6\% Carbon = 6,555 \frac{tons}{yr} carbon$$

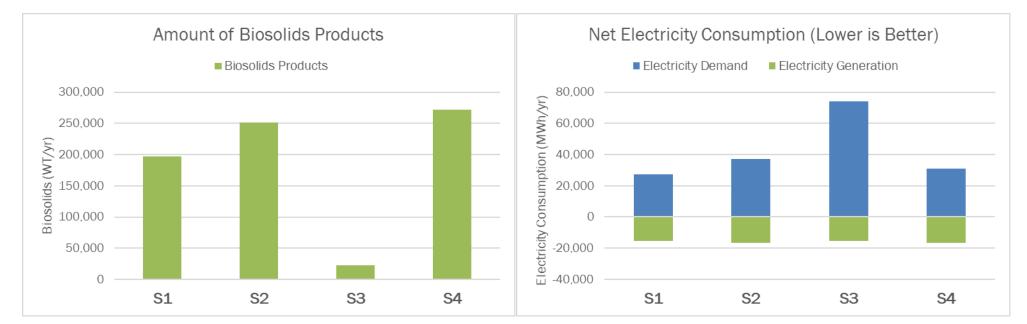
$$6,555 \frac{tons}{yr} carbon \times 90\% Fixed = 5,900 \frac{tons}{yr} fixed carbon$$

$$5,900 \frac{tons}{yr} fixed carbon \times 907 \frac{kg}{ton} = 5,352,006 \frac{kg}{yr} fixed carbon$$

$$5,352,006 \frac{kg}{yr} fixed carbon \times \frac{44 CO_2}{12 C} = 19,624,023 \frac{kg CO_2 e}{yr}$$

$$\frac{19,624,023 \frac{kg CO_2 e}{yr}}{21,017,640 \frac{kg biochar}{yr}} = 0.9337 \frac{kg CO_2 e}{kg biochar}$$


Attachment B: Solids-Water-Energy Evaluation Tool Results



Scenario	Facility	Stabilization	Dewatering	Post Dewatering	Biosolids Classification	End-Use
	West Point	MAD				Land Application
Scenario 1	South Plant	MAD	Centrifuge	-	Class B	Land Application West/East WA
	Brightwater	MAD				West/East WA
	West Point	TAD-Batch		Composting		Local Retail
Scenario 2	South Plant	THP-MAD	Centrifuge	-	Class A	Land Application West/East WA
	Brightwater	MAD		Soil Blending		Local Retail
		-		-		
	West Point	MAD			Unknown (Dotontial	
Scenario 3	South Plant	MAD	Centrifuge	Pyrolysis	Unknown (Potential	Regional Retail
	Brightwater	MAD			Class A)	
	West Point	TAD-Batch		Composting		Local Retail
Scenario 4	South Plant	TAD-Batch	Centrifuge	-	Class A	Land Application West/East WA
	Brightwater	MAD		Soil Blending		Local Retail

Parameter	<u>S1</u>	<u>S2</u>	<u>S3</u>	<u>S4</u>
Final Product, Wet (WT/d)	539	689	63	744
Trucks Required (Trucks/d)	19	67	22	68
Vehicle Fuel Consumption (gal/day)	1952	1360	104	1445
Electricity Demand (MWh/d)	75	101	203	85
Electricity Generation (MWh/d)	-42	-45	-42	-45
Net Power (MWh/d)*	33	56	160	40
Natural Gas Consumption (scfm)	145	260	708	210
Digester Gas Produced (scfm)	3325	3419	3325	3502
Methane Injected into Pipeline (scfm)	778	787	778	829
Polymer Use (lb/day)	4611	6359	4611	4344

Fuel Consumption			S1	S2	S3		S4
Natural Gas (SCF/yr)	Natural Gas (SCF/yr)				372,349,6	651	110,410,948
Natural Gas (MMBtu/y	Natural Gas (MMBtu/yr)			136,753	372,350	0	110,411
Diesel (gal/yr)			712,453	496,321	77,773	3	527,438
Diesel (MMBtu/yr)			97,877	68,185	10,685	5	72,460
Total MMBtu/yr			174,145	204,938	383,034	4	182,871
Hauling and Trucking	S1		S2	S3	S4		
Local Trucking		0	21,85	5 6	5,935	21,855	
Long Haul Trucking		6,935	2,55	5 1	1,095	2,920	

King County Class A Biosolids Technology Evaluation

Performar	nce Summary			1	2	3	
Solids Flows	and Loads		Notes	100% Class B application with MAD at all three plants	TAD-Batch , Cambi, and Off- site Soilblending or Composting	Off-site Pyrolysis	TAD-Batch and Off-site Soil blending or Composting
lement	· · · · ·			S1	\$2	\$3	S4
Vest Point Trea			_				
Solid	Is Loading and Flows			0.440.0	0.440.0	0.440.0	0.440.0
	PS + WAS	Average Digester Feed Load, dry lbs TS/hr		9,410.8	9,410.8	9,410.8	9,410.8
	PS + WAS	Average Digester Feed Load, %TS		6.1%	6.1%	6.1%	6%
	PS + WAS	Average Digester Feed Load, %VS		81.0%	81.0%	81.0%	81%
Chabi	W-atlan						
Stabi	ilization	Tune				MAD	
	Digester	Type		40.6	TAD-BATCH 43.5	MAD 40.6	TAD-BATCH
	Digester	Biogas Production, mmbtu/hr			_		44
	Digester	Biogas Production, SCFM		1,219.5	1,295.5	1,219.5	1295
	Digester	Methane Production, SCFM		731.7	777.3	731.7	777
0	Utilization				<u> </u>		
Gast	Cogen	Biogas Utilization, mmbtu/hr		-17.7	-18.9	-17.7	-18.9
	-	Methane Utilization, SCFM	_	-11.7	-338.1	-318.3	-18.9 -338.1
	Cogen Boiler	Biogas Utilization, mmbtu/hr	_	-318.3	-338.1	-318.3	-338.1
		0	_	-2.4 -42.8	-2.5 -45.5	-2.4 -42.8	-2.5
	Boiler	Methane Utilization, SCFM NG Utilization, mmbtu/hr	_				
	Boiler	NG Utilization, SCFM		0.0	0.0	0.0	0.0
	Boiler	Biogas Utilization, SCFM		0.0	0.0	0.0	0.0
	Gas Upgrading				0.0	0.0	a a
	Gas Upgrading	Methane Utilization, SCFM Biogas Utilization, mmbtu/hr		0.0	-22.0	-20.6	0.0
	Flare	5		-20.6	_		-
	Flare	Methane Utilization, SCFM	_	-370.6	-393.7	-370.6	-393.7
Thorn	mal Supply						
men	Heat Exchanger	Thermal Energy Production, mmbtu/hr		0.0	3.2	0.0	3.2
	Cogen	Thermal Energy Production, mmbtu/hr		6.4	6.8	6.4	6.8
	Boiler (biogas)	Thermal Energy Production, mmbtu/hr		2.0	2.2	2.0	2.2
	Boiler (NG)	Thermal Energy Production, mmbtu/hr		0.0	0.0	0.0	0.0
	Subtotal	Thermal Energy Production, mmbtu/yr		73,395.0	107,014.1	73,395.0	107014.1
	Subtotai	mermai Energy Production, ministu/ yi		13,395.0	107,014.1	73,395.0	107014.1
There	mal Demand				<u> </u>		
men	Digester	Thermal Energy Demand, mmbtu/hr		-5.9	-11.7	-5.9	-11.7
	Thermal Hydrolysis	Thermal Energy Demand, mmbtu/hr		0.0	0.0	0.0	0.0
	Pyrolysis	Thermal Energy Demand, mmbtu/hr		0.0	0.0	0.0	0.0
	Subtotal	Thermal Energy Demand, mmbtu/yr		-51,287.8	-102,575.6	-51,287.8	-102575.6
	Gubtotul			-01,201.0	-102,010.0	-01,201.0	102010.0
Total	Thermal Balance				+		
1000	Solids Treatment	Thermal Energy Total, mmbtu/yr		22.107.2	4.438.5	22.107.2	4.438.5
				,20112	.,	,	., 10010
Elect	ricity Consumption	1			<u> </u>		
	Digestion	Electricity Load, kW		-149.2	-165.8	-149.2	-165.8
	Heat Exchanger	Electricity Load, kW		0.0	-124.3	0.0	-124.3
	CHP	Parasitic Loads, kW		-239.7	-239.7	-239.7	-239.7
	Boiler	Parasitic loads, kW		-66.3	-66.3	-66.3	-66.3
	Gas Upgrading	Parasitic loads, kW		0.0	1.0	0.0	1.0
	Flare	Parasitic loads, kW		0.0	0.0	0.0	0.0

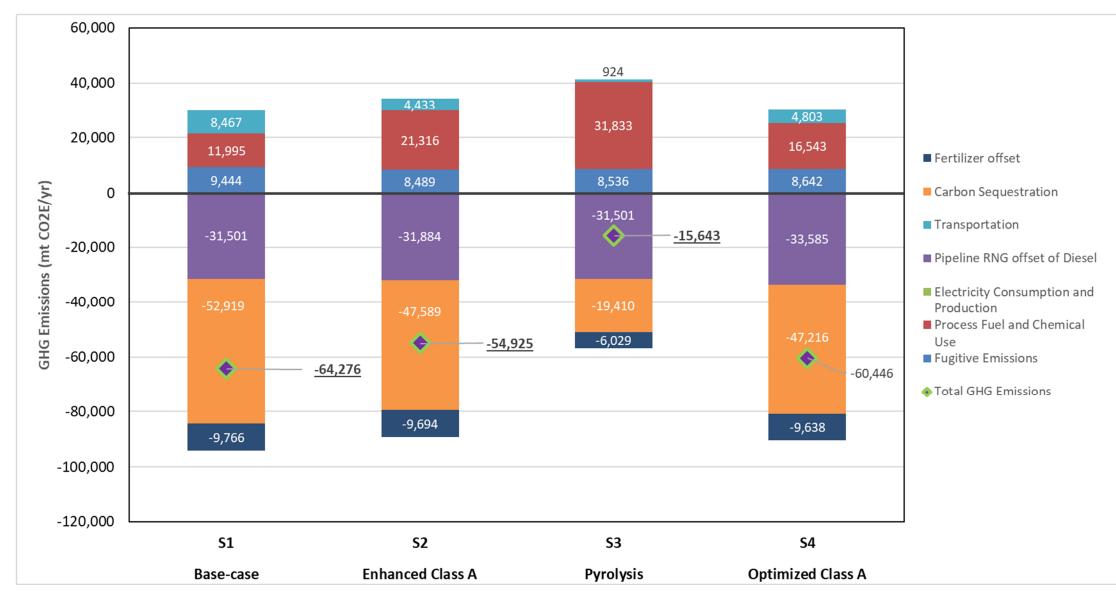
	Dewatering	Electricity Load, kW	-746.0	-746.0	-746.0	-746.0
	Subtotal	Electricity Load, MWh/yr	-10,522.8	-11,748.5	-10,522.8	-11,748.5
Electricit	y Production					
	CHP	Electricity Production, kW	1,759.7	1,886.3	1,759.7	1,886.3
	СНР	Electricity Production, MWh/yr	15,415.3	16,523.7	15,415.3	16,523.7
Total Ele	ctricity Balance					
	Solids Treatment	Electricity Total, MWh/yr	-10,522.8	-11,748.5	-10,522.8	-11,748.5
	Solids Treatment	Electricity Export, kWh/yr	15,415.3	16,523.7	15,415.3	16,523.7
	Solids Treatment	Electricity Import, kWh/yr	10,522.8	11,748.5	10,522.8	11,748.5
Oh	10					
Chemica		Debuser lies in accuracy	505 000 0	555.684.0	505.000.0	555,004,0
	Dewatering	Polymer Use, Ib per year	595,636.8	555,684.0	595,636.8	555,684.0
Hauled S	 Solide					
nadieu 3	Hauling	Average Hauled, wet tons/yr	64,224.3	59,916.4	64,224.3	59,916.4
	Hauling	Dry Solids, %	28.5%	28.5%	28.5%	00,010.4
	Hauling	Trucks per Day	6.0	6.0	6.0	
	Hauling	Trucks per Year	2,190.0	2,190.0	2,190.0	2,190.0
					_,	_,
reatment P	lant					
Solids Lo	ading and Flows					
	PS + WAS	Average Digester Feed Load, dry lbs TS/hr	10,990.0	10,990.0	10,990.0	10,990.0
	PS + WAS	Average Digester Feed Load, %TS	6.2%	6.2%	6.2%	6.2%
	PS + WAS	Average Digester Feed Load, %VS	85.9%	85.9%	85.9%	85.9%
Stabilizat						
	Digester	Туре	MAD	THP-MAD	MAD	TAD-Batch
	Digester	Biogas Production, mmbtu/hr	50.6	51.2	50.6	54.94
	Digester	Biogas Production, SCFM	1,533.6	1,552.3	1,533.6	1,635.04
	Digester	Methane Production, SCFM	920.2	931.4	920.2	981.03
0						
Gas Utiliz		Diagona Utilization manaktu /kw	0.0			0.0
	Cogen	Biogas Utilization, mmbtu/hr Methane Utilization, SCFM	0.0	0.0	0.0	0.0
	Cogen Boiler	Biogas Utilization, mmbtu/hr	0.0	0.0	0.0	0.0
	Boiler	Methane Utilization, SCFM	0.0	0.0	0.0	0.0
	Boiler	NG Utilization, mmbtu/hr	-7.9	-14.2	-7.9	-11.5
	Boiler	NG Utilization, SCFM	-1.9 -145.1	-14.2 -260.2	-7.9 -145.1	-11.5
	Gas Upgrading	Biogas Utilization, mmbtu/hr	-145.1	-260.2	-145.1 -42.8	-46.4
	Gas Upgrading	Methane Utilization, SCFM	-42.8	-43.5	-42.8	-40.4
	Flare	Biogas Utilization, mmbtu/hr	-7.8	-787.0	-7.8	-825.0
	Flare	Methane Utilization, SCFM	-142.6	-144.4	-142.6	-152.1
					112.0	102.1
Thermal	Supply			1	<u> </u>	1
	Cogen	Thermal Energy Production, mmbtu/hr	0.0	0.0	0.0	0
	Boiler (Biogas)	Thermal Energy Production, mmbtu/hr	0.0	0.0	0.0	0.0
	Boiler (NG)	Thermal Energy Production, mmbtu/hr	6.7	12.1	6.7	9.7
	Subtotal	Thermal Energy Production, mmbtu/yr	58,928.0	105,661.9	58,928.0	85,309.0
	Demand				1	1

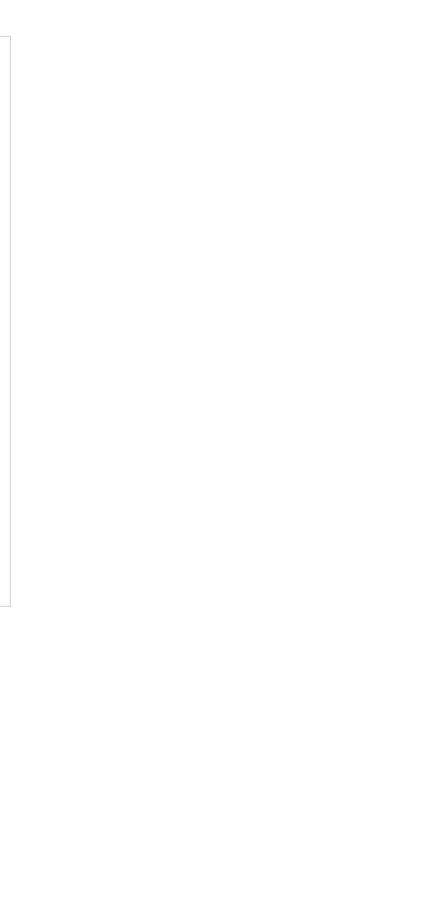
King County Class A Biosolids Technology Evaluation

	Digester	Thermal Energy Demand, mmbtu/hr	-6.7	0.0	-6.7	-13.5
•	Thermal Hydrolysis	Thermal Energy Demand, mmbtu/hr	0.0	-12.1	0.0	0.0
	Subtotal	Thermal Energy Demand, mmbtu/yr	-58,928.0	-105,662.0	-58,928.0	-117,856.1
	mal Balance Solids Treatment	The small Energy Tetal sevents (0.0	0.0	0.0	-32,547.0
-	Solids Treatment	Thermal Energy Total, mmbtu/yr	0.0	0.0	0.0	-32,547.0
Electricity	Consumption					
	Digestion	Electricity Load, kW	-119.4	-119.4	-119.4	-133
	THP	Electricity Load, kW	0.0	-223.8	0.0	0
	СНР	Electricity Load, kW	0.0	0.0	0.0	0
	Boiler	Electricity Load, kW	-66.3	-66.3	-66.3	-66
	Gas Upgrading	Electricity Load, kW	-550.4	-557.1	-550.4	-587
	Flare	Electricity Load, kW	0.0	0.0	0.0	0
	Predewatering	Electricity Load, kW	0.0	-497.3	0.0	0
	Dewatering	Electricity Load, kW	-746.0	-746.0	-746.0	-746
	Subtotal	Electricity Load, MWh/yr	-12,983.2	-19,358.9	-12,983.2	-13,418.2
	Production	Flootvicity Dvoduction 1/M			0.0	
	CHP CHP	Electricity Production, kW	0.0	0.0	0.0	0.0
-	CHP	Electricity Production, MWh/yr	0.0	0.0	0.0	0.0
Total Elect	ricity Balance					
	Solids Treatment	Electricity Total, MWh/yr	-12,983.2	-19,358.9	-12,983.2	-13,418.2
	Solids Treatment	Electricity Export, kWh/yr	0.0	0.0	0.0	1.0
:	Solids Treatment	Electricity Import, kWh/yr	12,983.2	19,358.9	12,983.2	13,418.2
	a ter Usage THP	Dilution Water, MG/yr	0.0	57.1	0.0	0
		Diution water, MG/ yr	0.0	57.1	0.0	0
Chemical	Usage					
	Predewatering	Polymer Use, Ib per year	0.0	722,043.0	0.0	0
	Dewatering	Polymer Use, Ib per year	816,156.7	771,898.5	816,156.7	758,712
Hauled So		Average Heuled wetters (m	00,000,5		00.000 5	00.001
	Hauling	Average Hauled, wet tons/yr	96,696.5	69,809.0	96,696.5	89,891
	Hauling	Dry Solids, % Trucks per Day	<u>22.9%</u> 9.0	30.0%	22.9% 9.0	22.9% 8
	Hauling Hauling	Trucks per Day	3,285.0	2,555.0	3,285.0	2,920.0
	nauling		5,205.0	2,000.0	3,203.0	2,920.0
vater Treatme						
	ding and Flows					
	PS + WAS	Average Digester Feed Load, dry lbs TS/hr	3,912.9	3,912.9	3,912.9	3,912.9
	PS + WAS	Average Digester Feed Load, %TS	5.8%	5.8%	5.8%	5.8%
	PS + WAS	Average Digester Feed Load, %VS	89.9%	89.9%	89.9%	89.9%
Stabilizati	on					
	Digester	Туре	MAD	MAD	MAD	MAD
	Digester	Biogas Production, mmbtu/hr	18.9	18.9	18.9	18.9
	Digester	Biogas Production, SCFM	571.5	571.5	571.5	571.5
	Digester	Methane Production, SCFM	342.9	342.9	342.9	342.9
	J		3.2.0	=		0.2.0

King County Class A Biosolids Technology Evaluation

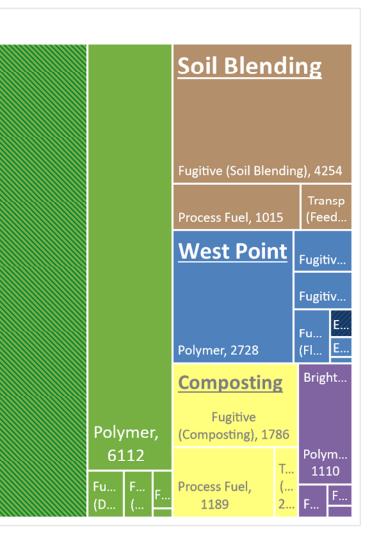
Gas Utiliz	ation					
	Cogen	Biogas Utilization, mmbtu/hr	0.0	0.0	0.0	0.0
	Cogen	Methane Utilization, SCFM	0.0	0.0	0.0	0.0
	Boiler	Biogas Utilization, mmbtu/hr	-13.2	-13.2	-13.2	-13.2
	Boiler	Methane Utilization, SCFM	-240.0	-240.0	-240.0	-240.0
	Gas Upgrading	Biogas Utilization, mmbtu/hr	0.0	0.0	0.0	0.0
	Gas Upgrading	Methane Utilization, SCFM	0.0	0.0	0.0	0.0
	Flare	Biogas Utilization, mmbtu/hr	-5.7	-5.7	-5.7	-5.7
	Flare	Methane Utilization, SCFM	-102.9	-102.9	-102.9	-102.9
Thermal S	Supply					
	Cogen	Thermal Energy Production, mmbtu/hr	0.0	0.0	0.0	0.0
	Boiler	Thermal Energy Production, mmbtu/hr	11.2	11.2	11.2	11.2
	Subtotal	Thermal Energy Production, mmbtu/yr	98,296.4	98,296.4	98,296.4	98,296.4
	Subiolai	mermai Energy Production, minibut/ yr	98,296.4	98,290.4	98,290.4	98,290.4
Thermal I	Demand					
	Digester	Thermal Energy Demand, mmbtu/hr	-2.6	-2.6	-2.6	-2.6
	Thermal Hydrolysis	Thermal Energy Demand, mmbtu/hr	0.0	0.0	0.0	0.0
	Pyrolysis	Thermal Energy Demand, mmbtu/hr	0.0	0.0	0.0	0.0
	Subtotal	Thermal Energy Demand, mmbtu/yr	-22,427.9	-22,427.9	-22,427.9	-22,427.9
Total The	ermal Balance					
	Solids Treatment	Thermal Energy Total, mmbtu/yr	75,868.5	75,868.5	75,868.5	75,868.5
			10,000.0	10,000.0	10,000.0	10,000.0
	y Consumption					
	Digestion	Electricity Load, kW	-89.5	-89.5	-89.5	-89.5
	СНР	Electricity Load, kW	0.0	0.0	0.0	0.0
	Boiler	Electricity Load, kW	-33.2	-33.2	-33.2	-33.2
	Gas Upgrading	Electricity Load, kW	0.0	0.0	0.0	0.0
	Flare	Electricity Load, kW	0.0	0.0	0.0	0.0
	Dewatering	Electricity Load, kW	-331.6	-331.6	-331.6	-331.6
	Subtotal	Electricity Load, MWh/yr	-3,979.1	-3,979.1	-3,979.1	-3,979.1
Electricity	y Production					
	CHP	Electricity Production, kW	0.0	0.0	0.0	0.0
	СНР	Electricity Production, MWh/yr	0.0	0.0	0.0	0.0
	ctricity Balance	Electricity Total MW/b/yr	2.070.4	-3.979.1	-3.979.1	2.070.4
	Solids Treatment	Electricity Total, MWh/yr	-3,979.1	-3,979.1	-3,979.1	-3,979.1 0.0
	Solids Treatment Solids Treatment	Electricity Export, kWh/yr Electricity Import, kWh/yr	0.0 3,979.1	3,979.1	0.0 3,979.1	0.0 3,979.1
+	Solids Treatment		3,979.1	3,979.1	3,979.1	3,979.1
Chemical	l Usage					
	Predewatering	Polymer Use, Ib per year	0.0	0.0	0.0	0.0
	Dewatering	Polymer Use, Ib per year	271,319.5	271,319.5	271,319.5	271,319.5
Hauled Se	 colide					
	Hauling	Average Hauled, wet tons/yr	35,856.8	35,856.8	35,856.8	35,856.8
	Hauling	Dry Solids, %	20.0%	20.0%	20.0%	20%
	-		4.0	4.0	4.0	4.0
	Hauling	Trucks per Day Trucks per Year	4.0	4.0	4.0	
	Hauling		1,460.0	1,400.0	1,400.0	1,460.0
	1					

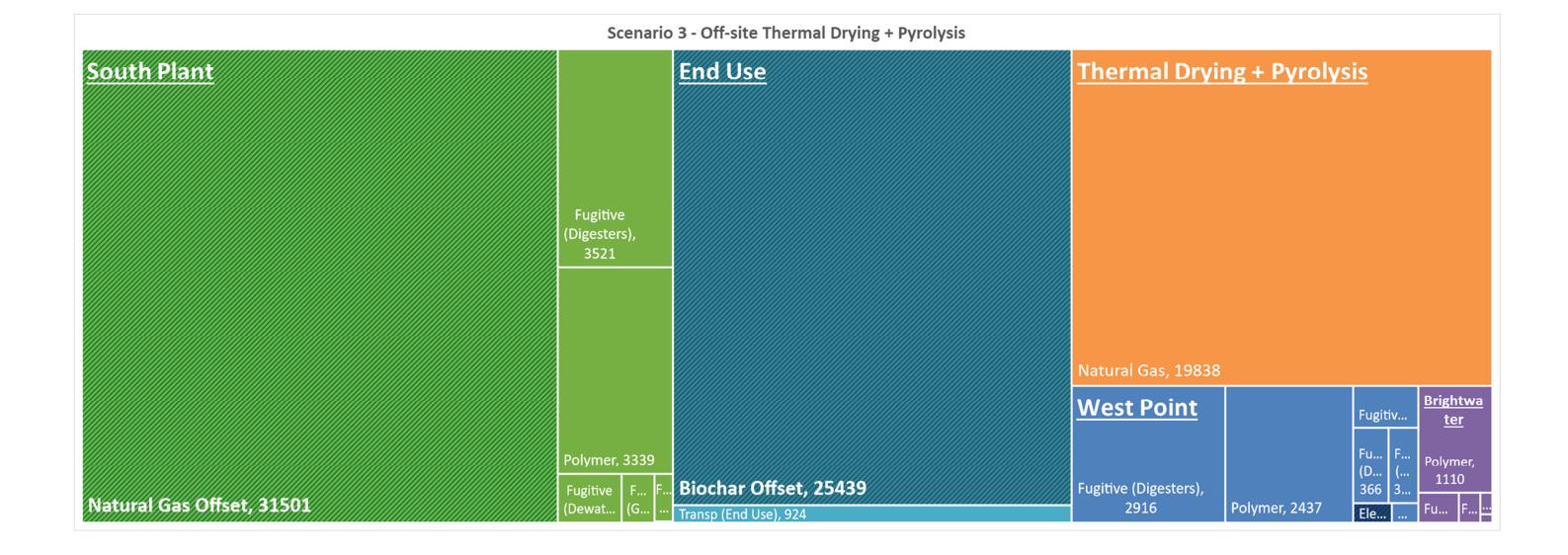

Solids Loading and Flows	-		
Dewatered Cake	Average Load, dry lbs TS/hr	1,637	1,637
Dewatered Cake	Average Load, %TS	20.0%	20%
Dewatered Cake	Average, %VS	77.6%	78%
Woodchips	Average Load, dry lbs TS/hr	5,519	5,519
Woodchips	Average Load, %TS	55.0%	55%
Woodchips	Average, %VS	95.0%	95%
Screened Overs	Average Load, dry lbs TS/hr	692	692
Screened Overs	Average Load, %TS	55.0%	55%
Screened Overs	Average, %VS	89.7%	90%
Feed Mixture	Average Load, dry Ibs TS/hr	7849	7,849
Feed Mixture	Average Load, %TS	40.3%	40%
Feed Mixture	Average, %VS	90.9%	91%
	Average, 7000	30.370	51%
Electricity Consumption			
	Electricity Load, kW	-216	-216
Composting	Electricity Load, KW	-216	-216
Fuel Consumption		074	074
Composting	Fuel Consumption (Diesel), gal/day	274	274
Hauling and Transportation			
Composting	Finished Compost, wet tons/yr	59,380	59,380
Composting	Dry Solids, %	50%	50%
Composting	Finished Compost, CY/yr	145,512	145,512
Commercial	Compost, wet tons/yr	41,566	41,566
Residential	Compost, wet tons/yr	5,938	5,938
Donated	Compost, wet tons/yr	11,876	11,876
Soil Blending (West Point Solid	s)		
Solids Loading and Flows			
Dewatered Cake	Average Load, dry lbs TS/hr	3,899	3,899
Dewatered Cake	Average Load, %TS	28.5%	29%
Dewatered Cake	Average, %VS	57.7%	58%
Sawdust	Average Load, dry lbs TS/hr	1,915	1,915
Sawdust	Average Load, %TS	60.0%	60%
Sawdust	Average, %VS	95.0%	95%
Fine Sand	Average Load, dry lbs TS/hr	10,526	10,526
Fine Sand	Average Load, %TS	95.0%	95%
Fine Sand	Average Load, %15	0.0%	0%
	Avelage, 70VO	0.0%	0%
Electricity Consumption			
Soil Blending	Electricity Load, kW	0	0
Fuel Consumption			
Soil Blending	Fuel Consumption (Diesel), gal/day	234	234
Hauling and Transportation			
Soil Blending	Blended product, wet tons/yr	122,429	122,429
Soil Blending	Dry Solids, %	58%	58%
	Blended product, CY/yr	188,353	188,353

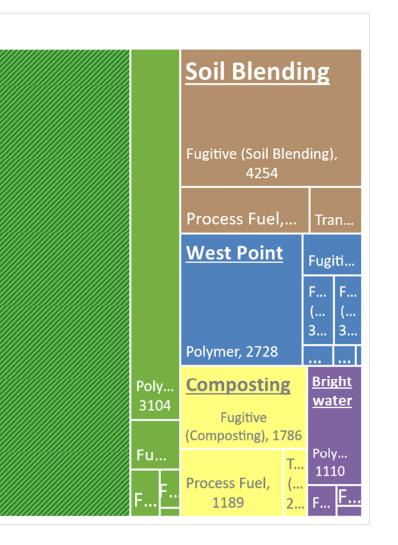

King County Class A Biosolids Technology Evaluation

01/21/2020	
01/21/2020	

	Commercial	Blended product, wet tons/yr	85,700		85,700
	Residential	Blended product, wet tons/yr	24,486		24,486
	Donated	Blended product, wet tons/yr	12,243		12,243
to Thermol D					
te Thermal D	rying and Pyrolysis				
Callda L	adlard and Flaura				
Solids Lo	oading and Flows	Average Lood, dwy lbe TC /by		10.070	
	Dewatered Cake	Average Load, dry lbs TS/hr		10,872	
	Dewatered Cake	Average Load, WT/yr		193,448	
	Dewatered Cake	Average Load, %TS		24.6%	
	Dewatered Cake	Average, %VS		67.90%	
Electricit	ty Consumption				
	Boiler	Electricity Load, kW		66	
	Thermal Drying	Electricity Load, kW		3,367	
	Pyrolysis	Electricity Load, kW		1,870	
	Subtotal	Electricity Load, MWh/yr		46,456.3	
Thermod					
Thermal	Boiler			30.72	
		NG Utilization, mmbtu/hr			
	Boiler	NG Utilization, SCFM		563	
	Boiler	Thermal Energy Production, mmbtu/hr		26.12	
	Thermal Drying	Thermal Energy Production, mmbtu/hr		0	
	Pyrolysis	Thermal Energy Production, mmbtu/hr		21	
	Subtotal	Thermal Energy Production, mmbtu/yr		415,294	
Thermal	Demand				
	Thermal Drying	Thermal Energy Demand, mmbtu/hr		-47	
	Pyrolysis	Thermal Energy Demand, mmbtu/hr		0	
	Subtotal	Thermal Energy Demand, mmbtu/yr		-415,295	
Total Th	ermal Balance				
Total III	Solids Treatment	Thermal Energy Total, mmbtu/yr		-0.2	
ll - alle a					
Hauling	and Transportation			00.000.4	
	Hauling	Average Hauled, wet tons/yr		22,920.1	
	Hauling	Dry Solids, %		100.0%	
	Hauling	Solids Reduction		51.9%	
	Hauling	Trucks per Day		3.0	
	Hauling	Trucks per Year		1,095.0	


GHG Emission Category	Emission Type	Scenario 1	Scenario 2	Scenario 3	Scenario 4
	Fugitive Emissions [SC1FST]	9,444	8,489	8,536	8,642
Scope 1	Fuel Combustion (Boilers, Machines) [SC1NGST, SC1MST]	4,042	9,452	19,735	8,055
Scol	Subtotal	13,486	17,941	28,270	16,697
• •	Subtotal (Check)	13,486	17,941	28,270	16,697
	Electricity Usage [SC2E]	104	112	104	112
ое 2	Electricity Exported [SC2EC]	-100	-107	-100	-107
Scope 2	Subtotal	4	4	4	4
•	Subtotal (Check)	4	4	4	4
	Polymer Consumption [SC3PST]	6,885	9,949	6,885	6,942
	Fertilizer Offset [SC3FCST]	-9,766	-9,694	-6,029	-9,638
	Carbon Sequestration [SC3CCST]	-52,919	-47,589	-19,410	-47,216
)e 3	Natural Gas Use (Production) [SC3NGST]	1,068	1,915	5,213	1,546
Scope 3	Pipeline RNG [SC3BGST]	-31,501	-31,884	-31,501	-33,585
0,	Hauling, Transportation, Application [SC3TST]	8,467	4,433	924	4,803
	Subtotal	-77,765	-72,871	-43,917	-77,148
	Subtotal (Check)	-77,765	-72,871	-43,917	-77,148
	<u>Total</u>	-64,276	-54,925	-15,643	-60,446





	Sc	enario 2 - Enhanced Class	A (TAD, THP, So	il Blending, and Composting)
<u>End Use</u>				<u>South Plant</u>
	Land App Offsets (Ag),	Land App Offsets	Transp (End Use), 4220	
Soil Blend Offset, 19201	17555	(Forestry), 7600	Land Land	Natural Gas Offset, 31884

		Scenario 4 - Optimized (Class A (TAD, Soil B	lending, and Composting)
<u>End Use</u>				<u>South Plant</u>
		Compost Offset, 129	Transp (End	
Soil Blend Offset, 19201	Land App Offsets (Ag), 17255	Land App Offsets (Forestry), 7470	Use), 4502 Land Land	Natural Gas Offset, 33585

King County Class A Biosolids Technology Evaluation

IG Emission	s Inventory		<i>~</i>	1	2	3	4
IG Emissions Inventory			Notes	Base-case	Enhanced Class A	Pyrolysis	Optimized Class A
ent			S1	\$2	S3	S4	
t Point Treatment	: plant						
Flastrias Fr							
Electrical Er	Solids Treatment	Electricity Production, MWh/yr		15,415	16,524	15,415	16,524
	Solids Treatment	Electricity Sold, MWh/yr		15,415	16,524	15,415	16,524
SC2EC	Solids Treatment	Emissions Offset, kg CO2e/yr		-100,199	-107,404	-100,199	-107,404
30220	Solids Treatment	Electricity Consumption, MWh/yr		-10,523	-107,404	-10,523	-107,404
	Solids Treatment	Electricity Purchased, MWh/yr		10,523	11,748	10,523	11,748
SC2E	Solids Treatment	Emission, kg CO2e/yr		68,398	76,365	68,398	76,365
SC2EST	Condo Fredemient	Subtotal, kg CO2e/yr		-31.801	-31.039	-31.801	-31.039
				01,001		01,001	02,000
Natural Gas	Emissions						
	Solids Treatment	Thermal Production, MMBtu/yr		73,395	107,014	73,395	107,014
	Solids Treatment	Thermal Consumption, MMBtu/yr		-51,288	-102,576	-51,288	-102,576
	Solids Treatment	Thermal Balance, MMBtu/yr		22,107	4,438	22,107	4,438
	Solids Treatment	External Natural Gas, scf/yr		0	0	0	
SC1NG	Combustion	Emission, kg CO2e/yr		0	0	0	
SC1NGST	Compastion	Subtotal, kg CO2e/yr		0	0	0	
SC3NG	Extraction/Production	Emission, kg CO2e/yr		0	0	0	
				•			
SC3NGST		Subtotal, kg CO2e/yr		0	0	0	
Chemical Er	nissions						
	Dewatering	Polymer Use, lb per yr		595,637	555,684	595,637	555,684
SC3P	Dewatering	Polymer Manufacturing, kg CO2e/yr		2,436,696	2,727,903	2,436,696	2,727,903
SC3PST		Subtotal, kg CO2e/yr		2,436,696	2,727,903	2,436,696	2,727,903
Process Fug	itive Emissions						
SC1F	Digestion	Digester Floating Cover (WP = 5, SP = 4, BW = 0), kg CO2e/yr		2,912,229	0	2,912,229	0
SC1F	Digestion	Digester Fixed Covers (WP = 0 SP = 1, BW = 3), kg CO2e/yr		3426	21838	3426	21,838
SC1F	Dewatering	Fugitive Emissions, kg CO2e/yr		365,873	365,128	365,873	365,128
SC1F	Cogen	Fugitive Emissions, kg CO2e/yr		391,671	416,085	391,671	416,085
SC1F	Boiler	Fugitive Emissions, kg CO2e/yr		601	639	601	639
SC1F	Flaring	Fugitive Emissions, kg CO2e/yr		312,362	331,833	312,362	331,833
SC1FST		Subtotal, kg CO2e/yr		3,986,162	1,135,523	3,986,162	1,135,523
Hauling and	Transportation						
	Hauling	Average Hauled, wet tons/yr		64,224	59,916	64,224	59,916
	Hauling	Dry Solids, %		28.5%	28.5%	28.5%	0
	Hauling	Trucks per year		2,190	2,190	2,190	2,190
	Hauling	Off-site Processing, Total Miles		0	65,700	65,700	65,700
	Hauling	Fuel Usage Round Trip, gal/yr		0	11,965	11,965	11,965
SC3T	Hauling	Emissions, kg CO2e/yr		0	142,204	142,204	142,204
	Hauling	Eastern Washington, Total Miles		827,820			
	Hauling	Fuel Usage Round Trip, gal/yr		150,760			
SC3T	Hauling	Emissions, kg CO2e/yr		1,791,771	To Officito Soil Blanding	To Officito Burolucio	To Off cito Soil Bland
	Hauling	Western Washington, Total Miles		15,330	To Off-site Soil Blending	To Off-site Pyrolysis	To Off-site Soil Blendi
	Hauling	Fuel Usage Round Trip, gal/yr		53,572			
SC3T	Hauling	Emissions, kg CO2e/yr		636,704			
SC3TST		Subtotal, kg CO2e/yr		2,428,474	142,204	142,204	142,204

King County Class A Biosolids Technology Evaluation

Land Applicat	tion					
	Agriculture	KC Fuel for Agriculture (Eastern) Application, gal/yr	18.519			
SC3T	Agriculture	Emissions, kg CO2e/yr	220,097	-		
5051	Forestry	KC Fuel for Forestry (Western) Application, gal/yr	2,826	-		
SC3T	Forestry	Emissions, kg CO2e/yr	33.585	-		
SC3TST	l'olocity	Subtotal, kg CO2e/yr	253.682	-		
SC1F	Agriculture	N20 and CH4 Emissions, kg C02e/yr	316,760	-		
SC1F	Forestry	N20 and CH4 Emissions, kg C02e/yr	35,196	-		
SC1FST	l'olocity	Subtotal, kg CO2e/yr	351.955	-		
002.01				To Off-site Soil Blending	To Off-site Pyrolysis	To Off-site Soil Blending
Carbon Offset	ts			-		
SC3FC	Agriculture	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	-4,333,916	-		
SC3FC	Forestry	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	0	-		
SC3FCST		Subtotal, kg CO2e/yr	-4.333.916	-		
SC3CC	Agriculture	Land App Carbon Sequestration, kg CO2e/yr	-18,680,671	-		
	Forestry	Land App Carbon Sequestration, kg CO2e/yr	-1,660,504	-		
SC3CCST		Subtotal, kg CO2e/yr	-20,341,175	-		
		0000000, 1.8 00-0, 9.				
WP GHG Plan	nt Total					
	Scope 1	CO2 Emissions, mt CO2e/yr	4,338	1,136	3,986	1,136
	Scope 2	CO2 Emissions, mt CO2e/yr	-32	-31	-32	-31
	Scope 3	CO2 Emissions, mt CO2e/yr	-19,556	2,870	2,579	2,870
	Plant Total	CO2 Emissions, mt CO2e/yr	<u>-15,250</u>	<u>3,975</u>	<u>6,533</u>	3,975
		CO2 Emissions, mt CO2e/yr	- <u>15,250</u> -15,250	3,975	6,533	3,975
	Plant Total Check	CO2 Emissions, mt CO2e/ yr	-15,250	3,975	6,533	3,975
auth Treaturent plant						
outh Treatment plant						
Electrical Em	issions					
Electrical Elli	Solids Treatment	Electricity Production, MWh/yr	0	0	0	0
	Solids Treatment	Electricity Sold, MWh/yr	0	0	0	0
SC2E	Solids Treatment	Emissions Offset, kg CO2e/yr	0	0	0	0
JUZE	Solids Treatment	Electricity Consumption, MWh/yr	-12,983	-19.359	-12,983	-13418
	Solids Treatment	Electricity Consumption, MWh/ yr	12,983	- /	12,983	13418
SC2E			0	19,359 0	0	13418
SC2EST	Solids Treatment	Emission, kg CO2e/yr	0	0	0	0
SUZESI		Subtotal, kg CO2e/yr	0	0	0	0
Natural Gas E	missions					
Natural Gas E		The way of Directive MMDtu (w	50.000	405.000	50.000	05 200
	Solids Treatment	Thermal Production, MMBtu/yr Thermal Consumption, MMBtu/yr	-58,928	105,662 -105,662	58,928 -58,928	85,309 -117.856
	Solids Treatment		-58,928	-105,662 136,752,625	-58,928 76,267,424	-117,856 110,410,948
60410	Solids Treatment	External Natural Gas, scf/yr				
SC1NG	Combustion	Emission, kg CO2e/yr	4,042,173	7,247,889	4,042,173	5,851,780
SC1NGST SC3NG	Extraction/Production	Subtotal, kg CO2e/yr	4,042,173	7,247,889	4,042,173	5,851,780
	Extraction/Production	Emission, kg CO2e/yr	1,067,744	1,914,537	1,067,744	1,545,753
		Subtatal lag 000a (un	1 007 744	1 014 527		4 545 750
SC3NG SC3NGST	,	Subtotal, kg CO2e/yr	1,067,744	1,914,537	1,067,744	1,545,753
	Solids Treatment	Renewable Natural Gas Export, scf/yr	367,809,910	372,282,694	1,067,744 367,809,910	392,134,504
	Solids Treatment Solids Treatment	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr	367,809,910 2,913,054	372,282,694 2,948,479	1,067,744 367,809,910 2,913,054	392,134,504 3,105,705
SC3NGST	Solids Treatment Solids Treatment Solids Treatment	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr	367,809,910 2,913,054 2,650,525	372,282,694 2,948,479 2,682,757	1,067,744 367,809,910 2,913,054 2,650,525	392,134,504 3,105,705 2,825,814
SC3NGST SC3BG	Solids Treatment Solids Treatment	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr Emission, kg CO2e/yr	367,809,910 2,913,054 2,650,525 -31,501,228	372,282,694 2,948,479 2,682,757 -31,884,301	1,067,744 367,809,910 2,913,054 2,650,525 -31,501,228	392,134,504 3,105,705 2,825,814 -33,584,517
SC3NGST	Solids Treatment Solids Treatment Solids Treatment	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr	367,809,910 2,913,054 2,650,525	372,282,694 2,948,479 2,682,757	1,067,744 367,809,910 2,913,054 2,650,525	392,134,504 3,105,705 2,825,814
SC3NGST SC3BG SC3BG SC3BGST	Solids Treatment Solids Treatment Solids Treatment Solids Treatment	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr Emission, kg CO2e/yr	367,809,910 2,913,054 2,650,525 -31,501,228	372,282,694 2,948,479 2,682,757 -31,884,301	1,067,744 367,809,910 2,913,054 2,650,525 -31,501,228	392,134,504 3,105,705 2,825,814 -33,584,517
SC3NGST SC3BG	Solids Treatment Solids Treatment Solids Treatment Solids Treatment <u>Solids Treatment</u> <u>issions</u>	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr Emission, kg CO2e/yr Subtotal, kg CO2e/yr	367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228	372,282,694 2,948,479 2,682,757 -31,884,301 -31,884,301	1,067,744 367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228	392,134,504 3,105,705 2,825,814 -33,584,517 -33,584,517
SC3NGST SC3BG SC3BG SC3BGST Chemical Em	Solids Treatment Solids Treatment Solids Treatment Solids Treatment Solids Treatment issions Pre-Dewatering	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr Emission, kg CO2e/yr Subtotal, kg CO2e/yr Polymer Use, lb per yr	367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228 -0 0	372,282,694 2,948,479 2,682,757 -31,884,301 -31,884,301 -722,043	1,067,744 367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228 0	392,134,504 3,105,705 2,825,814 -33,584,517 -33,584,517 0
SC3NGST SC3BG SC3BG SC3BGST	Solids Treatment Solids Treatment Solids Treatment Solids Treatment Solids Treatment issions Pre-Dewatering Pre-Dewatering	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr Emission, kg CO2e/yr Subtotal, kg CO2e/yr Polymer Use, Ib per yr Polymer Manufacturing, kg CO2e/yr	367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228 0 0 0	372,282,694 2,948,479 2,682,757 -31,884,301 -31,884,301 - 722,043 2,953,812	1,067,744 367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228 0 0	392,134,504 3,105,705 2,825,814 -33,584,517 -33,584,517 0 0
SC3NGST SC3BG SC3BG SC3BGST Chemical Em	Solids Treatment Solids Treatment Solids Treatment Solids Treatment Solids Treatment issions Pre-Dewatering	Renewable Natural Gas Export, scf/yr Gallon of Gasoline Equiv, gal/yr RNG as Diesel Equiv, gal/yr Emission, kg CO2e/yr Subtotal, kg CO2e/yr Polymer Use, lb per yr	367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228 -0 0	372,282,694 2,948,479 2,682,757 -31,884,301 -31,884,301 -722,043	1,067,744 367,809,910 2,913,054 2,650,525 -31,501,228 -31,501,228 0	392,134,504 3,105,705 2,825,814 -33,584,517 -33,584,517 -33,584,517 0

King County Class A Biosolids Technology Evaluation

SC3PST		Subtotal, kg CO2e/yr	3,338,823	6,111,579	3,338,823	3,103,823
Process Fugiti	ve Emissions					
SC1F	Digestion	Digester Floating Cover (KP = 5, SP = 4, BW = 0), kg CO2e/yr	3,515,991	0	3,515,991	0
SC1F	Digestion	Digester Fixed Covers (KP = 0, SP = 1, BW = 3), kg CO2e/yr	5,171	26,167	5,171	27,563
SC1F	Dewatering	Fugitive Emissions, kg CO2e/yr	420,225	279,021	420,225	419,307
SC1F	Cogen	Fugitive Emissions, kg CO2e/yr	0	0	0	0
SC1F	Boiler	Fugitive Emissions, kg CO2e/yr	2,038	3,655	2,038	2,951
SC1F	Gas Upgrading	Fugitive Emissions, kg CO2e/yr	218,457	221,113	218,457	232,904
SC1F	Flaring	Fugitive Emissions, kg CO2e/yr	120,216	121,678	120,216	128,166
SC1FST		Subtotal, kg CO2e/yr	4,282,097	651,635	4,282,097	810,891
Hauling and T	ransportation					
	Hauling	Average Hauled, wet tons/yr	96,696	69,809	96,696	89,891
	Hauling	Dry Solids, %	22.9%	30.0%	22.9%	23%
	Hauling	Trucks per year	3,285	2,555	3,285	2920
	Hauling	Off-site Processing, Total Miles	0	0	98,550	0
	Hauling	Fuel Usage Round Trip, gal/yr	0	0	17,948	0
SC3T	Hauling	Emissions, kg CO2e/yr	0	0	213,306	0
	Hauling	Eastern Washington, Total Miles	1,241,730	643,860		735,840
	Hauling	Fuel Usage Round Trip, gal/yr	226,140	117,258		134,009
SC3T	Hauling	Emissions, kg CO2e/yr	2,687,656	1,393,600	To Off-site Pyrolysis	1,592,685
	Hauling	Western Washington, Total Miles	22,995	71,540	To on-site r yrorysis	81,760
	Hauling	Fuel Usage Round Trip, gal/yr	80,359	48,799	_	55,770
SC3T	Hauling	Emissions, kg CO2e/yr	955,055	579,967		662,820
SC3TST		Subtotal, kg CO2e/yr	3,642,712	1,973,567	213,306	2,255,505
Land Applicat	ion					
	Agriculture	KC Fuel for Agriculture (Eastern) Application, gal/yr	27,882	13.420		17.280
SC3T	Agriculture	Emissions, kg C02e/yr	331,379	159,491	-	205,370
	Forestry	KC Fuel for Forestry (Western) Application, gal/yr	4,255	12,286	-	15,821
SC3T	Forestry	Emissions, kg C02e/yr	50,566	146,023	-	188,028
SC3TST		Subtotal, kg CO2e/yr	381,945	305,513	-	393,398
SC1F	Agriculture	N20 and CH4 Emissions, kg C02e/yr	383,206	161,078	-	158,326
SC1F	Forestry	N20 and CH4 Emissions, kg CO2e/yr	42,578	241,617	7	237,489
SC1FST		Subtotal, kg CO2e/yr	425,784	402,695	To Off-site Pyrolysis	395,816
Carbon Offcot						
Carbon Offsets SC3FC	s Agriculture	Nitrogen and Phosphorus Fertillizer Offset, kg C02e/yr	-5,243,033	-3,305,811		-3,249,338
SC3FC	Forestry	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	0	0	-	0
SC3FCST		Subtotal, kg CO2e/yr	-5,243,033	-3,305,811	-	-3,249,338
SC3CC	Agriculture	Land App Carbon Sequestration, kg CO2e/yr	-22,599,279	-14,249,184		-14,005,769
SC3CC	Forestry	Land App Carbon Sequestration, kg CO2e/yr	-2,008,825	-7,599,565		-7,469,743
SC3CCST		Subtotal, kg CO2e/yr	-24,608,104	-21,848,749		-21,475,512
SP GHG Plant	Total					
	Scope 1	CO2 Emissions, mt CO2e/yr	8.750	8.302	8.324	7,058
	Scope 2	CO2 Emissions, mt CO2e/yr	0	0	0	0
	Scope 2 Scope 3	CO2 Emissions, mt CO2e/yr	-52.921	-46.734	-26.881	-51.011
	Plant Total	CO2 Emissions, mt CO2e/yr	-44,171	-38,431	-18,557	-43,952
	Plant Total Check	CO2 Emissions, mt CO2e/yr	-44,171	-38,431	-18,557	-43,952
			,			-,
	Diant					
twater Treatment I	Plant					
	ssions					

	Solids Treatment	Electricity Production, MWh/yr	0	0	0	0
	Solids Treatment	Electricity Sold, MWh/yr	0	0	0	0
SC2E	Solids Treatment	Emissions Offset, kg CO2e/yr	0	0	0	0
	Solids Treatment	Electricity Consumption, MWh/yr	-3,979	-3,979	-3,979	-3,979
	Solids Treatment	Electricity Purchased, MWh/yr	3,979	3,979	3,979	3,979
SC2E	Solids Treatment	Emission, kg CO2e/yr	35,414	35,414	35,414	35,414
SC2EST		Subtotal, kg CO2e/yr	35,414	35,414	35,414	35,414
Natural Gas I	Emissions					
	Solids Treatment	Thermal Production, MMBtu/yr	98,296	98,296	98,296	98,296
	Solids Treatment	Thermal Consumption, MMBtu/yr	-22,428	-22,428	-22,428	-22,428
	Solids Treatment	Thermal Balance, MMBtu/yr	75,868	75,868	75,868	75,868
	Solids Treatment	External Natural Gas, scf/yr	0	0	0	0
SC1NG	Combustion	Emission, kg CO2e/yr	0	0	0	0
SC1NGST		Subtotal, kg CO2e/yr	0	0	0	0
SC3NG	Extraction/Production	Emission, kg CO2e/yr	0	0	0	0
SC3NGST	,	Subtotal, kg CO2e/yr	0	0	0	0
Chemical Em	nissions					
	Pre-Dewatering	Polymer Use, Ib per yr	0	0	0	0
SC3P	Pre-Dewatering	Polymer Manufacturing, kg CO2e/yr	0	0	0	0
	Dewatering	Polymer Use, Ib per yr	271,320	271,320	271,320	271.320
SC3P	Dewatering	Polymer Manufacturing, kg CO2e/yr	1.109.944	1.109.944	1.109.944	1.109.944
SC3PST		Subtotal, kg C02e/yr	1,109,944	1.109.944	1.109.944	1.109.944
			1 1 -	, , -	1 1 -	,,-
Process Fugi	tive Emissions					
SC1F	Digestion	Digester Floating Cover (KP = 5, SP = 4, BW = 0), kg CO2e/yr	0	0	0	0
SC1F	Digestion	Digester Fixed Covers (KP = 0, SP = 1, BW = 3), kg CO2e/yr	9,634	9,634	9,634	9,634
SC1F	Dewatering	Fugitive Emissions, kg CO2e/yr	159,970	159,970	159,970	159,970
SC1F	Cogen	Fugitive Emissions, kg CO2e/yr	0	0	0	0
SC1F	Boiler	Fugitive Emissions, kg CO2e/yr	3,372	3,372	3,372	3,372
SC1F	Gas Upgrading	Fugitive Emissions, kg CO2e/yr	0	0	0	0
SC1F	Flaring	Fugitive Emissions, kg CO2e/yr	86,703	86,703	86,703	86,703
SC1FST		Subtotal, kg CO2e/yr	259,679	259,679	259,679	259,679
Hauling and	Transportation					
	Hauling	Average Hauled, wet tons/yr	35,857	35.857	35,857	35.857
	Hauling	Dry Solids, %	20.0%	20.0%	20.0%	20.0%
	Hauling	Trucks per year	1,460	1,460	1,460	1,460
	Hauling	Off-site Processing, Total Miles	0	43,800	43,800	43,800
	Hauling	Fuel Usage Round Trip, gal/yr	0	7,977	7,977	7,977
SC3T	Hauling	Emissions, kg CO2e/yr	0	94,803	94,803	94,803
	Hauling	Eastern Washington, Total Miles	551,880	,	,	0.,000
	Hauling	Fuel Usage Round Trip, gal/yr	100,507			
SC3T	Hauling	Emissions, kg CO2e/yr	1,194,514			
0001	Hauling	Western Washington, Total Miles	10,220	To Off-site Composting	To Off-site Pyrolysis	To Off-site Compo
	Hauling	Fuel Usage Round Trip, gal/yr	35,715			
SC3T	Hauling	Emissions, kg CO2e/yr	424,469			
SC3TST	naumg	Subtotal, kg CO2e/yr	1,618,983	94,803	94,803	94803
503131		Subiotal, ng 6026/ yi	1,010,903	34,003	34 ,000	94603
Land Applica	tion					
⊾anu AppiiCa	Agriculture	KC Fuel for Agriculture (Eastern) Application, gal/yr	10.339			
SC3T	-		122.881			
3631	Agriculture Forestry	Emissions, kg CO2e/yr	/			
	FORESTRY	KC Fuel for Forestry (Western) Application, gal/yr	1,578			
SC3T	Forestry	Emissions, kg C02e/yr	18,751			

King County Class A Biosolids Technology Evaluation

01/23/2020

SC1F	Agriculture	N20 and CH4 Emissions, kg C02e/yr	124,104			
SC1F	Forestry	N2O and CH4 Emissions, kg CO2e/yr	13,789			
SC1FST		Subtotal, kg CO2e/yr	137,894	To Official Operation	To Official Developing	To Official Oceanoration
				To Off-site Composting	To Off-site Pyrolysis	To Off-site Compostin
Carbon Offsets						
SC3FC	Agriculture	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	-188,667			
SC3FC	Forestry	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	0			
SC3FCST	,	Subtotal, kg CO2e/yr	-188,667			
SC3CC	Agriculture	Land App Carbon Sequestration, kg CO2e/yr	-7,318,972			
SC3CC	Forestry	Land App Carbon Sequestration, kg CO2e/yr	-650,575			
SC3CCST	,	Subtotal, kg CO2e/yr	-7,969,547			
SP GHG Plant 1	Total					
	Scope 1	CO2 Emissions, mt CO2e/yr	398	260	260	260
	Scope 2	CO2 Emissions, mt CO2e/yr	35	35	35	35
	Scope 3	CO2 Emissions, mt CO2e/yr	-5,288	1,205	1,205	1,205
	Plant Total	CO2 Emissions, mt CO2e/yr	-4,855	1,500	1,500	1,500
	Plant Total Check	CO2 Emissions, mt CO2e/yr	-4,855	1,500	1,500	1,500
	Plant Total Check	CO2 Emissions, mt CO2e/ yr	-4,855	1,500	1,500	1,500
Site Composting	1					
Headland and Tax						
Hauling and Tra		Freedotech (Countert) and there (an		04.475		04.475
	Hauling	Feedstock (Sawdust), wet tons/yr		24,175		24,175
	Hauling	Large Trucks per year		779.8		780
	Hauling	Feedstock to Off-site Processing, Total Miles		124,773		124,773
	Hauling	Fuel (Diesel) Usage Round Trip, gal/yr		22,723		22,723
SC3T	Hauling	Emissions, kg CO2e/yr		270,065		270,065
	Hauling	Commercial/Donation Usage, wet tons/yr		47,504		47,504
	Hauling	Medium Trucks per year		7,038		7,038
	Hauling	Off-site Processing to Customer, Total Miles		175,941		175,941
	Hauling	Fuel (Diesel) Usage Round Trip, gal/yr		20,900		20,900
SC3T	Hauling	Emissions, kg CO2e/yr		248,400		248,400
	Transportation	Residential Usage, wet tons/yr		11,876		11,876
	Transportation	Vehicles per year		42,754		42,754
	Transportation	Fuel (Gasoline) Usage Round Trip, gal/yr		42,754		42,754
SC3T	Transportation	Emissions, kg CO2e/yr		453,104		453,104
SC3TST		Subtotal, kg CO2e/yr		971,568		971,568
Fuel Emissions						
	Composting	Machinery Fuel Consumption (Diesel), gal/day		274		274
SC1M	Composting	Emissions, kg CO2e/yr		1,188,609		1,188,609
SC1MST		Subtotal, kg CO2e/yr		1,188,609		1,188,609
Electrical Emise	sions					
	Composting	Electricity Consumption, MWh/yr		-1,888		-1,888
	Composting	Electricity Purchased, MWh/yr		1,888		1,888
SC2E	Composting	Emission, kg CO2e/yr		0		0
SC2EST		Subtotal, kg CO2e/yr		0		0
						-
Process Fugitiv	e Emissions					1
	Composting	Biosolids, dry lb/hr		1,637.3		1,637
SC1F	Composting	N20 Emissions, kg C02e/yr		691,058.6		691,059
SC1F	Composting	CH4 Emissions, kg CO2e/yr		1,095,262.7		1,095,263
SC1FST	composing	Subtotal, kg CO2e/yr		1,786,321.3		1,786,321
301131	 	Jubiolai, ng 6026/ yi		1,100,321.3		1,100,321

King County Class A Biosolids Technology Evaluation

Carbon Offsets				
SC3FC	Land Application	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	-1,886,283.6	-1,886,284
SC3FCST		Subtotal, kg CO2e/yr	-1,886,283.6	-1,886,284
SC3CC	Land Application	Land App Carbon Sequestration, kg CO2e/yr	-11,040,853	-11,040,853
SC3CCST		Subtotal, kg CO2e/yr	-11,040,853	-11,040,853
	Scope 1	CO2 Emissions, mt CO2e/yr	2,975	2,975
	Scope 2	CO2 Emissions, mt CO2e/yr	0	0
-	Scope 3	CO2 Emissions, mt CO2e/yr	-11,956	-11,956
	Plant Total	CO2 Emissions, mt CO2e/yr	-8,981	-8,981
	Plant Total Check	CO2 Emissions, mt CO2c/yr	-8,981	-8,981
e Soll Blending				
Hauling and Tr	ansportation			
	Hauling	Feedstock (Sawdust), wet tons/yr	13,980	13,980
	Hauling	Large Trucks per year	451.0	451
	Hauling	Feedstock to Off-site Processing, Total Miles	72,157	72,157
	Hauling	Fuel (Diesel) Usage Round Trip, gal/yr	13,141	13,141
SC3T	Hauling	Emissions, kg CO2e/yr	156,181	156,181
	Hauling	Feedstock (Fine Sand), wet tons/yr	48,532	48,532
	Hauling	Large Trucks per year	1,565.6	1,566
	Hauling	Feedstock to Off-site Processing, Total Miles	117,417	117,417
	Hauling	Fuel (Diesel) Usage Round Trip, gal/yr	21,384	21,384
SC3T	Hauling	Emissions, kg CO2e/yr	254,142	254,142
	Hauling	Commercial/Donation Usage, wet tons/yr	97,943	97,943
	Hauling	Medium Trucks per year	8,371	8,371
	Hauling	Off-site Processing to Customer, Total Miles	209,281	209,281
	Hauling	Fuel (Diesel) Usage Round Trip, gal/yr	21,048	21,048
SC3T	Hauling	Emissions, kg CO2e/yr	250,152	250,152
	Transportation	Residential Usage, wet tons/yr	24,486	24,486
	Transportation	Vehicles per year	50,855	50,855
	Transportation	Fuel (Gasoline) Usage Round Trip, gal/yr	50,855	50,855
SC3T	Transportation	Emissions, kg CO2e/yr	538,963	538,963
SC3TST		Subtotal, kg CO2e/yr	945,296	945,296
Fuel Emissions	<u>.</u>			
	Soil Blending	Machinery Fuel Consumption (Diesel), gal/day	234	234
SC1M	Soil Blending	Emissions, kg CO2e/yr	1,015,089	1,015,089
SC1MST		Subtotal, kg CO2e/yr	1,015,089	1,015,089
Electrical Emis	sions			
	Soil Blending	Electricity Consumption, MWh/yr	0	0
	Soil Blending	Electricity Purchased, MWh/yr	0	0
SC2E	Soil Blending	Emission, kg CO2e/yr	0	0
SC2EST		Subtotal, kg CO2e/yr	0	0
Process Fugitiv	/e Emissions			
	Soil Blending	Biosolids, dry lb/hr	3.898.7	3.899
SC1F	Soil Blending	N20 Emissions, kg C02e/yr	1,645,521.9	1,645,522
SC1F	Soil Blending	CH4 Emissions, kg CO2e/yr	2,607,996.9	2,607,997
SC1FST		Subtotal, kg CO2e/yr	4,253,518.8	4,253,519
Contra Offerst				
Carbon Offsets SC3FC	Land Application	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr	-4.501.899.4	-4,501,899
30310	Lana Application	managen and Phosphorus Ferninzer Offset, kg 602e/ yr	-4,501,655.4	-4,001,899

King County Class A Biosolids Technology Evaluation

SC3FCST		Subtotal, kg CO2e/yr	-4,501,899.4		-4,501,899
SC3CC	Land Application	Land App Carbon Sequestration, kg CO2e/yr	-14,699,522		-14,699,522
SC3CCST		Subtotal, kg CO2e/yr	-14,699,522		-14,699,52
	-				
	Scope 1	CO2 Emissions, mt CO2e/yr	 5,269		5,269
	Scope 2	CO2 Emissions, mt CO2e/yr	 0		0
	Scope 3	CO2 Emissions, mt CO2e/yr	-18,256		-18,256
	Plant Total	CO2 Emissions, mt CO2e/yr	<u>-12,988</u>		<u>-12,988</u>
	Plant Total Check	CO2 Emissions, mt CO2e/yr	-12,988		-12,988
Thermal Drying	g and Pyrolysis				
	-				
Hauling and	Transportation		 		
	Hauling	Biochar, wet tons/yr		22,920.1	
	Hauling	Large Trucks per year		1,095.0	
	Hauling	Biochar to Customers, Total Miles		219,000.0	
	Hauling	Fuel (Diesel) Usage Round Trip, gal/yr		39,883.7	
SC3T	Hauling	Emissions, kg CO2e/yr		474,013.5	
SC3TST		Subtotal, kg CO2e/yr		474,013.5	
Electrical Em	issions				
<u>Licotridai Lin</u>	Solids Treatment	Electricity Production, MWh/yr		0.0	
	Solids Treatment	Electricity Sold, MWh/yr		0.0	
SC2E	Solids Treatment	Emissions Offset, kg CO2e/yr		0.0	
3021	Solids Treatment	Electricity Consumption, MWh/yr	 	46,456.3	
-	Solids Treatment	Electricity Purchased, MWh/yr	 	46,456.3	
SC2E	Solids Treatment	Emission, kg CO2e/yr	 	0.0	
SC2EST	Solius Treatment	Subtotal, kg CO2e/yr	 	0.0	
302131				0.0	
Natural Gas I	missions				
	Solids Treatment	Thermal Production, MMBtu/yr		415,294	
	Solids Treatment	Thermal Consumption, MMBtu/yr		-415,295	
	Solids Treatment	Thermal Balance, MMBtu/yr		0	
	Solids Treatment	External Natural Gas, scf/yr		296,082,227	
SC1NG	Combustion	Emission, kg CO2e/yr		15,692,358	
SC1NGST		Subtotal, kg CO2e/yr		15,692,358	
SC3NG	Extraction/Production	Emission, kg CO2e/yr		4,145,151	
SC3NGST	,	Subtotal, kg CO2e/yr		4,145,151	
Duran Ford	the Particular				
	tive Emissions	Engliting Employing log 000a (m		7.010.5	
SC1F SC1FST	Boiler	Fugitive Emissions, kg CO2e/yr Subtotal, kg CO2e/yr		7,913.5	
301131		Subiolal, kg CO2e/ yr		1,913.5	
Carbon Offse	ts				
SC3FC	Land Application	Nitrogen and Phosphorus Fertillizer Offset, kg CO2e/yr		-6,028,670.2	
SC3FCST		Subtotal, kg CO2e/yr		-6,028,670.2	
SC3CC	Land Application	Land App Carbon Sequestration, kg CO2e/yr		-19,410,031	
SC3CCST		Subtotal, kg CO2e/yr		-19,410,031	
				4	
	Scope 1	CO2 Emissions, mt CO2e/yr		15,700	
	Scope 2	CO2 Emissions, mt CO2e/yr		0	
	Scope 3	CO2 Emissions, mt CO2e/yr		-20,820	
	Plant Total	CO2 Emissions, mt CO2e/yr		<u>-5,119</u>	
	Plant Total Check	CO2 Emissions, mt CO2e/yr		-5,119	

KC Class A Biosolids Technology Evaluation

Attachment C: Cost Estimating

King County Class A Biosolids Technology Evaluation

Luncia J No. <th>Laboration 0 vision<!--</th--><th></th><th></th><th></th><th>* NPV LCCA</th><th>Project Capital Cost</th><th>2018</th><th>2019</th><th>2020</th><th>2021</th><th>2022</th><th>2023</th><th>2024</th><th>2025</th><th>2026</th><th>2027</th><th>2028</th><th>2029</th><th>2030</th><th>2031</th><th>2032</th><th>2033</th></th>	Laboration 0 vision </th <th></th> <th></th> <th></th> <th>* NPV LCCA</th> <th>Project Capital Cost</th> <th>2018</th> <th>2019</th> <th>2020</th> <th>2021</th> <th>2022</th> <th>2023</th> <th>2024</th> <th>2025</th> <th>2026</th> <th>2027</th> <th>2028</th> <th>2029</th> <th>2030</th> <th>2031</th> <th>2032</th> <th>2033</th>				* NPV LCCA	Project Capital Cost	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Normal matrix Normal m	Image: market is a serie is a se				NPV LCCA														0	1	2	
Interface Interface <t< td=""><td>Note Horizon H</td><td></td><td>West Point Treatment plant</td><td>Solids Flows and Loads</td><td></td><td></td><td>49258</td><td>49743</td><td>50228</td><td>50713</td><td>51199</td><td>51684</td><td>52169</td><td>52654</td><td>53139</td><td>53624</td><td>54110</td><td>54595</td><td>154859</td><td>156969</td><td>159079</td><td>161189</td></t<>	Note Horizon H		West Point Treatment plant	Solids Flows and Loads			49258	49743	50228	50713	51199	51684	52169	52654	53139	53624	54110	54595	154859	156969	159079	161189
Note of the section of the s	Marganes Norm Control			MAD Additional Digesters		NPV Capital Cost																
Image: market with the second secon	interface interface <t< td=""><td></td><td></td><td></td><td></td><td>Escalated and Discounted</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					Escalated and Discounted																
No No No No No <td>No No<</td> <td></td> <td></td> <td></td> <td></td> <td>\$119,384,603</td> <td>\$7,781,156</td> <td>\$7,857,802</td> <td>\$7,934,447</td> <td>\$8,011,093</td> <td>\$8,087,738</td> <td>, . ,</td> <td>\$8,241,030</td> <td>\$8,317,675</td> <td>\$8,394,321</td> <td>\$8,470,966</td> <td>\$8,547,612</td> <td>\$8,624,257</td> <td>\$8,700,903</td> <td>\$8,777,549</td> <td>\$8,854,194</td> <td>\$8,930,840</td>	No No<					\$119,384,603	\$7,781,156	\$7,857,802	\$7,934,447	\$8,011,093	\$8,087,738	, . ,	\$8,241,030	\$8,317,675	\$8,394,321	\$8,470,966	\$8,547,612	\$8,624,257	\$8,700,903	\$8,777,549	\$8,854,194	\$8,930,840
No. No. <td>No No<</td> <td></td> <td>Land App</td> <td>Land App East/West WA Cost, \$/yr</td> <td></td> <td></td> <td>\$3,103,283</td> <td>\$3,133,851</td> <td>\$3,164,418</td> <td>\$3,194,986</td> <td>\$3,225,554</td> <td>\$3,256,122</td> <td>\$3,286,690</td> <td>\$3,317,258</td> <td>\$3,347,825</td> <td>\$3,378,393</td> <td>\$3,408,961</td> <td>\$3,439,529</td> <td>\$3,470,097</td> <td>\$3,500,664</td> <td>\$3,531,232</td> <td>\$3,561,800</td>	No No<		Land App	Land App East/West WA Cost, \$/yr			\$3,103,283	\$3,133,851	\$3,164,418	\$3,194,986	\$3,225,554	\$3,256,122	\$3,286,690	\$3,317,258	\$3,347,825	\$3,378,393	\$3,408,961	\$3,439,529	\$3,470,097	\$3,500,664	\$3,531,232	\$3,561,800
No Normal Normal Normal	Note::::::::::::::::::::::::::::::::::::		CHP	Electricity Sales, \$/yr																		
S1 mean and an analysis mean and any and any and any and any any any any any any any any any any	S1 mining strategy in preserve s			Land App East/West WA Revenue, \$/yr			-\$113,193	-\$114,308	-\$115,423	-\$116,538	-\$117,653	-\$118,768	-\$119,883	-\$120,998	-\$122,113	-\$123,228	-\$124,343	-\$125,458	-\$126,573	-\$127,687	-\$128,802	-\$129,917
Note of the second se	Non-statement were were were were were were were wer		Capital Cost			NPV Capital Cost \$83,127,778																
53 interfactor in	No. <			Operation and Maintenance & /ur		Escalated and Discounted	¢0 505 540	40 740 754	to 054 000	£0.005.000	40.440.450	40.054.000	40 004 000	40 540 400	AD 054 000	¢0.704.000	£0.047.000	¢40.054.400	\$40.404.007	440.047.570	¢40.450.007	£10 504 040
Image: intermember	Note	C1	Land Application			\$03,320,581	, , , , , ,	, .,		,,	, ., .	, ,		,		, . ,		,. , .	, , , , ,	,. ,	, .,	
Image: proj we determine the second	Display Display <t< td=""><td>51</td><td></td><td>Land App East/West WA Cost, \$/yr</td><td></td><td></td><td>4,106,032</td><td>4,169,752</td><td>4,233,471</td><td>4,297,191</td><td>4,360,911</td><td>4,424,630</td><td>4,488,350</td><td>4,552,070</td><td>4,615,789</td><td>4,679,509</td><td>4,743,229</td><td>4,806,949</td><td>4,870,668</td><td>4,934,388</td><td>4,998,108</td><td>5,061,827</td></t<>	51		Land App East/West WA Cost, \$/yr			4,106,032	4,169,752	4,233,471	4,297,191	4,360,911	4,424,630	4,488,350	4,552,070	4,615,789	4,679,509	4,743,229	4,806,949	4,870,668	4,934,388	4,998,108	5,061,827
Normalization Normalintern Normalization Normaliza	Note with the second of the second																					
Image: space	Normalization Instrument of the second of the		Brightwater Treatment Plant					-4102,000		-9100,141	-\$100,000	-+101,505	-\$105,114	-\$100,000	4100,502		-\$113,010	-9110,004	-\$111,005	-\$113,303	-\$102,301	-\$104,001
Image: Norme of the second s	Barrier Barrier Control Section Contro Section Control Section					<u>NPV Capital Cost</u> \$39,098,386																·
Image: second	Image: second			Operation and Maintenance, \$/yr			\$1,980.025	\$2,057,820	\$2,135,616	\$2,213,412	\$2,291,208	\$2,369,003	\$2,446,799	\$2,524,595	\$2,602,390	\$2,680,186	\$2,757,982	\$2,835,777	\$2,913,573	\$2,991,369	\$3,069,164	\$3,146,960
Image: not only only only only only only only only	N N		Land Application																			
Image: Note:	Note Note <th< td=""><td></td><td>Revenues</td><td></td><td></td><td></td><td>. ,,</td><td>. ,, .</td><td></td><td>., .,</td><td>. ,,</td><td></td><td>., , .</td><td>.,.,</td><td>. ,,</td><td>, ,,</td><td></td><td>.,,,.</td><td>. , . ,</td><td></td><td>. , . , .</td><td></td></th<>		Revenues				. ,,	. ,, .		., .,	. ,,		., , .	.,.,	. ,,	, ,,		.,,,.	. , . ,		. , . , .	
Image: series of the	Normal Network <t< td=""><td></td><td>Land App</td><td></td><td></td><td>¢222.200.280</td><td>-\$36,821</td><td>-\$38,268</td><td>-\$39,715</td><td>-\$41,161</td><td>-\$42,608</td><td>-\$44,055</td><td>-\$45,502</td><td>-\$46,948</td><td>-\$48,395</td><td>-\$49,842</td><td>-\$51,288</td><td>-\$52,735</td><td>-\$54,182</td><td></td><td></td><td>,</td></t<>		Land App			¢222.200.280	-\$36,821	-\$38,268	-\$39,715	-\$41,161	-\$42,608	-\$44,055	-\$45,502	-\$46,948	-\$48,395	-\$49,842	-\$51,288	-\$52,735	-\$54,182			,
Normalian Normalian <t< td=""><td>No No<</td><td></td><td></td><td></td><td>\$563,764,215</td><td>\$222,206,389</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$23,577,616</td><td>\$23,895,277</td><td>\$24,212,938</td></t<>	No No<				\$563,764,215	\$222,206,389														\$23,577,616	\$23,895,277	\$24,212,938
Self-dia Mode	visite visite<																					
Image: many series of the series of	Note: the set of t			TAD-Batch		NPV Capital Cost																
1 1	Norm Norm <th< td=""><td></td><td>Oneration and Maintenance</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		Oneration and Maintenance																			
Image: Note of the set of the se	Note Image: marging interment in the image: marging in		Solids Treatment	Operation and Maintenance, \$/yr			\$7,820,822	\$7,897,858	\$7,974,895	\$8,051,931	\$8,128,967	\$8,206,004	\$8,283,040	\$8,360,076	\$8,437,113	\$8,514,149	\$8,591,185	\$8,668,221	\$8,745,258	\$8,822,294	\$8,899,330	\$8,976,367
pic main biology pic main biology<	Image: Processes in the state of t			Land App East/West WA Cost, \$/yr															\$0	\$0	\$0	\$0
Lark Lark <th< td=""><td>Image: state in the s</td><td></td><td></td><td>Electricity Sales, \$/yr</td><td></td><td></td><td>-\$1,259,574</td><td>-\$1,271,981</td><td>-\$1,284,388</td><td>-\$1,296,795</td><td>-\$1,309,202</td><td>-\$1,321,609</td><td>-\$1,334,016</td><td>-\$1,346,423</td><td>-\$1,358,830</td><td>-\$1,371,237</td><td>-\$1,383,644</td><td>-\$1,396,051</td><td>-\$1,408,458</td><td>-\$1,420,865</td><td>-\$1,433,272</td><td>-\$1,445,679</td></th<>	Image: state in the s			Electricity Sales, \$/yr			-\$1,259,574	-\$1,271,981	-\$1,284,388	-\$1,296,795	-\$1,309,202	-\$1,321,609	-\$1,334,016	-\$1,346,423	-\$1,358,830	-\$1,371,237	-\$1,383,644	-\$1,396,051	-\$1,408,458	-\$1,420,865	-\$1,433,272	-\$1,445,679
Product product <t< td=""><td>Production Production d><td></td><td>Land App East/West WA Revenue, \$/yr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$0</td><td>\$0</td><td>\$0</td><td>\$0</td></t<>	Production Produci			Land App East/West WA Revenue, \$/yr															\$0	\$0	\$0	\$0
Note: Control of second co	Note: if the intervent is intervent is intervent is intervent is intervent intervent is intervent intervent is intervent intervent is intervent intervent is intervent intervent intervent intervent intervent is intervent intervent is intervent intervent intervent intervent intervent is intervent intervent intervent intervent intervent is intervent in			THP-MAD		NPV Capital Cost																
Lap Lap <thlap< th=""> <thlap< th=""> <thlap< th=""></thlap<></thlap<></thlap<>						Escalated and Discounted																
Long Long for Lon	Not not not not not not not not not not n			Operation and Maintenance, \$/yr		\$437,821,421	\$12,049,067	\$12,236,052	\$12,423,036	\$12,610,020	\$12,797,004	\$12,983,988	\$13,170,972	\$13,357,956	\$13,544,941	\$13,731,925	\$13,918,909	\$14,105,893	\$14,292,877	\$14,479,861	\$14,666,846	\$14,853,830
Last Output Test State	Lark Lark <thlark< th=""> Lark Lark <thl< td=""><td></td><td></td><td>Land App East/West WA Cost, \$/yr</td><td></td><td></td><td>\$3,083,253</td><td>\$3,131,100</td><td>\$3,178,948</td><td>\$3,226,796</td><td>\$3,274,643</td><td>\$3,322,491</td><td>\$3,370,339</td><td>\$3,418,186</td><td>\$3,466,034</td><td>\$3,513,881</td><td>\$3,561,729</td><td>\$3,609,577</td><td>\$3,657,424</td><td>\$3,705,272</td><td>\$3,753,120</td><td>\$3,800,967</td></thl<></thlark<>			Land App East/West WA Cost, \$/yr			\$3,083,253	\$3,131,100	\$3,178,948	\$3,226,796	\$3,274,643	\$3,322,491	\$3,370,339	\$3,418,186	\$3,466,034	\$3,513,881	\$3,561,729	\$3,609,577	\$3,657,424	\$3,705,272	\$3,753,120	\$3,800,967
Net Net <td>Note::::::::::::::::::::::::::::::::::::</td> <td></td> <td>Biogas</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Note::::::::::::::::::::::::::::::::::::		Biogas																			
Note Note <th< td=""><td>Note inclusion inc</td><td></td><td></td><td>- · · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td>-\$190,406</td><td>-\$193,361</td><td>-\$196,316</td><td>-\$199,270</td><td>-\$202,225</td><td>-\$205,180</td><td>-\$208,135</td><td>-\$211,090</td><td>-\$214,045</td><td>-\$216,999</td><td>-\$219,954</td><td>-\$222,909</td><td>-\$225,864</td><td>-\$228,819</td><td>-\$231,774</td><td>-\$234,728</td></th<>	Note inclusion inc			- · · · · · · · · · · · · · · · · · · ·			-\$190,406	-\$193,361	-\$196,316	-\$199,270	-\$202,225	-\$205,180	-\$208,135	-\$211,090	-\$214,045	-\$216,999	-\$219,954	-\$222,909	-\$225,864	-\$228,819	-\$231,774	-\$234,728
bit control co	Note Image:		Capital Cost	MAD		NPV Capital Cost \$39,098,386																
bit bit <td>Not Image I</td> <td></td> <td></td> <td>Operation and Maintenance & /ur</td> <td></td> <td>Escalated and Discounted</td> <td>¢1 000 005</td> <td>¢0.057.000</td> <td>40 405 646</td> <td>to 010 110</td> <td>¢0.004.000</td> <td>#0.000.000</td> <td>40,440,700</td> <td>\$0.504.505</td> <td>AO 600 000</td> <td>¢0.000.400</td> <td>to 757 000</td> <td>to 005 777</td> <td>¢0.010.570</td> <td>40.001.000</td> <td>ta 000 404</td> <td>42.440.000</td>	Not Image I			Operation and Maintenance & /ur		Escalated and Discounted	¢1 000 005	¢0.057.000	40 405 646	to 010 110	¢0.004.000	#0.000.000	40,440,700	\$0.504.505	A O 600 000	¢0.000.400	to 757 000	to 005 777	¢0.010.570	40.001.000	ta 000 404	42.440.000
P37 Nume Index na App EdWork Meemes, fyr Index Na App EdWork Meemes, fyr Index Napp EdWork Me	S2 Image in the large in		Land Application			\$32,891,206	\$1,980,025	\$2,057,820	\$2,135,616	\$2,213,412	\$2,291,208	\$2,369,003	\$2,446,799	\$2,524,595	\$2,602,390	\$2,680,186	\$2,757,982	\$2,835,777	\$2,913,573		, , .	
refer to model indication inditetttttttttttttttttttttttttttttttttt	refusion refusion	62																		\$0	\$0	
Ball Consisting Cons Consisting Consisting	Open in the series Open in the series	32	Land App	Land App East/West WA Revenue, \$/yr																\$0	\$0	\$0
bit <td>Normal Transported in a stransported</td> <td></td> <td></td> <td>Composting</td> <td></td> <td>NPV Capital Cost</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Normal Transported in a stransported			Composting		NPV Capital Cost																
Normal balance Symp Operation and Maintence, \$ym Image: \$p = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	Image: Imag					Escalated and Discounted																
Image: Comparing processing Operation and Maintenace, Syr Operation and Maintenace, Syr Serve Part Solution and Maintenace, Syr Serve Solution and Maintenace, Syr Serve So	Image: mark and the leader of the leade			Hauling & Fuel Cost, \$/yr		\$100,869,993														\$441,251	\$452,726	\$464,202
wordship Tpling Fee, Syr fplong Fee, Syr </td <td>Noncontrol Noncontrol oncontrol Noncontrol<td></td><td>Composting</td><td>Operation and Maintenance, \$/yr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$4,133,571</td><td>\$4,241,072</td><td>\$4,348,573</td></td>	Noncontrol Noncontro Noncontrol Noncontrol <td></td> <td>Composting</td> <td>Operation and Maintenance, \$/yr</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\$4,133,571</td> <td>\$4,241,072</td> <td>\$4,348,573</td>		Composting	Operation and Maintenance, \$/yr																\$4,133,571	\$4,241,072	\$4,348,573
Image: Self self self self self self self self s	Image: mark of the state		Woodchips																			
Model and flow shorts only shorts	Orbite Solid Bending (West Points Oblide Solid Bending <td></td> <td>Composting</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Composting																			
Image: Part of the state o	Image: Normal Sector Sector <th< td=""><td></td><td>Off-Site Soll Blending (West Point Solids)</td><td></td><td></td><td>NDV Control Cont</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> ,</td><td></td></th<>		Off-Site Soll Blending (West Point Solids)			NDV Control Cont															,	
bioslids & Feedstock Hauling & Fuel Cost, S/yr Feedstock Hauling & Fuel Cost, S/yr Feedstock Fine Sand Material Purchase, S/yr Geneticity Fine Sand Material Purchase, S/yr Operation Material Purchase, S/yr Soll Blending Operation Geneticity <t< td=""><td>Image Sensitive Hauling & Fuel Cost, Syrt Hauling & Fuel Cost, Syrt Sensitive</td></t<> <td></td> <td></td> <td></td> <td></td> <td>\$58,462,405</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Image Sensitive Hauling & Fuel Cost, Syrt Hauling & Fuel Cost, Syrt Sensitive					\$58,462,405																
Peeds dry Purchase Second of Purchase Second o	Feedrod Functional Feedrod Productional Feedrod Productional Feedrod <td></td> <td></td> <td>s Hauling & Fuel Cost, \$/yr</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\$846,764</td> <td>\$854,158</td> <td>\$861,552</td>			s Hauling & Fuel Cost, \$/yr																\$846,764	\$854,158	\$861,552
Operation and Maintenance Operation and Maintenance Image: Commercial (Syret) Soli Blending Operation and Maintenance, Syret Image: Commercial (Syret)	Operation and Maintenance Op		Feedstock Purchase																			
Revenues Image: Commercial (), \$/yr [Soil Blend Revenue Year (Commercial), \$/yr	Revenue Soll Blend Revenue Year (Commercial), Syr Image: Commercial (Commercial), Syr Image: Commerc		Operation and Maintenance																			
Soil Blend Revenue Year (Commercial), \$/yr	Soil Blend Revenue Year (Commercia), \$/yr Image: Commercial, \$/yr \$403,875 \$407,402 \$\$821,857 \$501 Blend Revenue Year (Consumer), \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$407,402 \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr \$\$821,857 Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr Image: Commercial, \$/yr		Revenues																	\$5,570,677	\$5,619,320	\$5,667,963
Soil Blend Revenue Year (Consumer) S/vr	Subtotal \$728,936,411		Soil Blend																			
			Joil Bienu			\$728.936.411	I	1	1	I	1	1	I	1	1		1					
				<u></u> <u>Total</u>	\$1,146,904,715																	

King County Class A Biosolids Technology Evaluation

King County, Washington

2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050		
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
163299	165409	167519	169629	171740	173850	175960	178070	180180	182290	184400	186510	188621	190731	192841	194951	197061		
																	Simple SUM	Present Worth (2020)
\$9,007,485	\$9,084,131	\$9,160,777	\$9,237,422	\$9,314,068	\$9,390,713	\$9,467,359	\$9,544,004	\$9,620,650	\$9,697,296	\$9,773,941	\$9,850,587	\$9,927,232	\$10,003,878	\$10,080,524	\$10,157,169	\$10,233,815	\$198,814,537 \$0	\$122,420,640.57 \$0.00
\$3,592,368	\$3,622,936	\$3,653,503	\$3,684,071	\$3,714,639	\$3,745,207	\$3,775,775	\$3,806,343	\$3,836,910	\$3,867,478	\$3,898,046	\$3,928,614	\$3,959,182	\$3,989,749	\$4,020,317	\$4,050,885	\$4,081,453	\$79,291,269 \$0	\$48,823,833.90 \$0.00
-\$1,372,530	-\$1,384,209	-\$1,395,888	-\$1,407,567	-\$1,419,246	-\$1,430,925	-\$1,442,604	-\$1,454,283	-\$1,465,962	-\$1,477,641	-\$1,489,320	-\$1,500,999	-\$1,512,678	-\$1,524,357	-\$1,536,036	-\$1,547,715	-\$1,559,394	-\$30,294,694	-\$18,654,047.74
-\$131,032	-\$132,147	-\$133,262	-\$134,377	-\$135,492	-\$136,607	-\$137,722	-\$138,837	-\$139,952	-\$141,067	-\$142,182	-\$143,297	-\$144,412	-\$145,527	-\$146,642	-\$147,757	-\$148,872	-\$2,892,166 \$244,918,945	-\$1,780,859.91 \$150,809,566.82
\$10,717,277	\$10,850,512	\$10,983,747	\$11,116,981	\$11,250,216	\$11,383,451	\$11,516,686	\$11,649,921	\$11,783,156	\$11,916,391	\$12,049,626	\$12,182,860	\$12,316,095	\$12,449,330	\$12,582,565	\$12,715,800	\$12,849,035	\$241,850,408	\$148,808,792.69
5,125,547	5,189,267	5,252,986	5,316,706	5,380,426	5,444,145	5,507,865	5,571,585	5,635,305	5,699,024	5,762,744	5,826,464	5,890,183	5,953,903	6,017,623	6,081,342	6,145,062	\$0 \$115,665,169	\$0.00 \$71,167,934.94
-\$7,030,440	-\$7,117,841	-\$7,205,242	-\$7,292,643	-\$7,380,044	-\$7,467,445	-\$7,554,846	-\$7,642,247	-\$7,729,648	-\$7,817,049	-\$7,904,450	-\$7,991,851	-\$8,079,251	-\$8,166,652	-\$8,254,053	-\$8,341,454	-\$8,428,855	\$0	\$0.00 -\$97,617,274.00
-\$186,955	-\$189,280	-\$191,604	-\$193,928	-\$196,252	-\$198,576	-\$200,901	-\$203,225	-\$205,549	-\$207,873	-\$210,197	-\$212,522	-\$214,846	-\$217,170	-\$8,234,033	-\$221,818	-\$224,142	-\$158,651,764 -\$4,218,912	-\$2,595,865.83
																	\$194,644,900	\$119,763,587.80
\$3,224,756	\$3,302,551	\$3,380,347	\$3,458,143	\$3,535,938	\$3,613,734	\$3,691,530	\$3,769,325	\$3,847,121	\$3,924,917	\$4,002,712	\$4,080,508	\$4,158,304	\$4,236,099	\$4,313,895	\$4,391,691	\$4,469,486	\$77,522,124 \$0	\$47,601,147.62 \$0.00
\$1,644,093	\$1,683,756	\$1,723,419	\$1,763,082	\$1,802,745	\$1,842,408	\$1,882,071	\$1,921,734	\$1,961,397	\$2,001,060	\$2,040,723	\$2,080,386	\$2,120,049	\$2,159,712	\$2,199,375	\$2,239,038	\$2,278,701	\$39,523,491	\$24,268,730.46
-\$59,969	-\$61,415	-\$62,862	-\$64,309	-\$65,756	-\$67,202	-\$68,649	-\$70,096	-\$71,542	-\$72,989	-\$74,436	-\$75,883	-\$77,329	-\$78,776	-\$80,223	-\$81,669	-\$83,116	\$0 -\$1,441,628	\$0.00 -\$885,207.19
\$24,530,599	\$24,848,259	\$25,165,920	\$25,483,581	\$25,801,242	\$26,118,903	\$26,436,563	\$26,754,224	\$27,071,885	\$27,389,546	\$27,707,207	\$28,024,868	\$28,342,528	\$28,660,189	\$28,977,850	\$29,295,511	\$29,613,172	\$115,603,987	\$70,984,670.89
\$9,053,403	\$9,130,439	\$9,207,476	\$9,284,512	\$9,361,548	\$9,438,584	\$9,515,621	\$9,592,657	\$9,669,693	\$9,746,730	\$9,823,766	\$9,900,802	\$9,977,839	\$10,054,875	\$10,131,911	\$10,208,947	\$10,285,984	\$199,828,036	\$123,044,705.59
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0.00 \$0.00
-\$1,458,086	-\$1,470,493	-\$1,482,900	-\$1,495,307	-\$1,507,714	-\$1,520,121	-\$1,532,528	-\$1,544,935	-\$1,557,342	-\$1,569,749	-\$1,582,156	-\$1,594,563	-\$1,606,970	-\$1,619,377	-\$1,631,784	-\$1,644,191	-\$1,656,598	\$0 -\$32,183,084	\$0.00 -\$19,816,829.34
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	-\$1,044,151 \$0	\$0	\$0	\$0.00
																	\$167,644,952	\$103,227,876
																	-	
\$15,040,814	\$15,227,798	\$15,414,782	\$15,601,766	\$15,788,750	\$15,975,735	\$16,162,719	\$16,349,703	\$16,536,687	\$16,723,671	\$16,910,655	\$17,097,640	\$17,284,624	\$17,471,608	\$17,658,592	\$17,845,576	\$18,032,560	\$339,417,094 \$0	\$208,840,863.17 \$0.00
\$3,848,815	\$3,896,663	\$3,944,510	\$3,992,358	\$4,040,205	\$4,088,053	\$4,135,901	\$4,183,748	\$4,231,596	\$4,279,444	\$4,327,291	\$4,375,139	\$4,422,987	\$4,470,834	\$4,518,682	\$4,566,529	\$4,614,377	\$86,853,915 \$0	\$53,440,580.93 \$0.00
-\$7,115,935	-\$7,204,398	-\$7,292,862	-\$7,381,326	-\$7,469,790	-\$7,558,254	-\$7,646,717	-\$7,735,181	-\$7,823,645	-\$7,912,109	-\$8,000,572	-\$8,089,036	-\$8,177,500	-\$8,265,964	-\$8,354,427	-\$8,442,891	-\$8,531,355	-\$160,581,063	-\$98,804,357.29
-\$237,683	-\$240,638	-\$243,593	-\$246,548	-\$249,503	-\$252,457	-\$255,412	-\$258,367	-\$261,322	-\$264,277	-\$267,232	-\$270,186	-\$273,141	-\$276,096	-\$279,051	-\$282,006	-\$284,960	-\$5,363,656 \$260,326,290	-\$3,300,218.63 \$160,176,868
\$3,224,756	\$3,302,551	\$3,380,347	\$3,458,143	\$3,535,938	\$3,613,734	\$3,691,530	\$3,769,325	\$3,847,121	\$3,924,917	\$4,002,712	\$4,080,508	\$4,158,304	\$4,236,099	\$4,313,895	\$4,391,691	\$4,469,486	\$77,522,124	\$47,601,147.62
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0.00 \$0.00
																	\$0	\$0.00
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$77,522,124	\$0.00 \$47,601,148
																	-	
\$475,677	\$487,153	\$498,628	\$510,104	\$521,579	\$533,055	\$544,530	\$556,006	\$567,481	\$578,956	\$590,432	\$601,907	\$613,383	\$624,858	\$636,334	\$647,809	\$659,285	\$11,005,356	\$7,021,548.40
																	\$0	\$0.00
\$4,456,073	\$4,563,574	\$4,671,074	\$4,778,575	\$4,886,076	\$4,993,576	\$5,101,077	\$5,208,578	\$5,316,078	\$5,423,579	\$5,531,079	\$5,638,580	\$5,746,081	\$5,853,581	\$5,961,082	\$6,068,582	\$6,176,083	\$103,096,544 \$0	\$65,776,827.67 \$0.00
-\$634,263 -\$603,681	-\$649,565 -\$618,244	-\$664,866 -\$632,808	-\$680,167 -\$647,371	-\$695,469 -\$661,935	-\$710,770 -\$1,014,747	-\$726,071 -\$1,036,593	-\$741,372 -\$1,058,438	-\$756,674 -\$1,080,283	-\$771,975 -\$1,102,128	-\$787,276 -\$1,123,974	-\$802,578 -\$1,527,759	-\$817,879 -\$1,556,886	-\$833,180 -\$1,586,013	-\$848,482 -\$1,615,140	-\$863,783 -\$1,644,267	-\$879,084 -\$1,673,394	-\$14,674,437 -\$20,340,047	-\$9,362,466.00 (12,465,138)
-\$496,068	-\$508,035	-\$520,003	-\$531,970	-\$543,938	-\$952,980	-\$973,496	-\$994,011	-\$1,014,527	-\$1,035,042	-\$1,055,558	-\$1,614,110	-\$1,644,883	-\$1,675,657	-\$1,706,430	-\$1,737,203	-\$1,767,977	-\$19,655,546	(11,910,043)
																	\$59,431,870	\$39,060,729
]	
\$868,946	\$876,340	\$883,734	\$891,128	\$898,522	\$905,916	\$913,310	\$920,704	\$928,098	\$935,492	\$942,886	\$950,279	\$957,673	\$965,067	\$972,461	\$979,855	\$987,249	\$18,340,134 \$0	\$11,809,836.66 \$0.00
\$527,365	\$531,853	\$536,340	\$540,828	\$545,315	\$549,802	\$554,290	\$558,777	\$563,265	\$567,752	\$572,239	\$576,727	\$581,214	\$585,702	\$590,189	\$594,676	\$599,164	\$11,130,671	\$7,167,417.67
\$5,716,607	\$5,765,250	\$5,813,893	\$5,862,536	\$5,911,179	\$5,959,822	\$6,008,466	\$6,057,109	\$6,105,752	\$6,154,395	\$6,203,038	\$6,251,681	\$6,300,325	\$6,348,968	\$6,397,611	\$6,446,254	\$6,494,897	\$0 \$120,655,743	\$0.00 \$77,694,340.45
-\$828,910	-\$835,964	-\$843,017	-\$850,070	-\$857,123	-\$1,296,265	-\$1,306,845	-\$1,317,425	-\$1,328,005	-\$1,338,585	-\$1,349,165	-\$1,812,993	-\$1,827,099	-\$1,841,206	-\$1,855,312	-\$1,869,419	-\$1,883,525	\$0 -\$24,874,060	\$0.00 (15,361,659)
-\$626,656	-\$631,988	-\$637,321	-\$642,653	-\$647,985	-\$1,119,973	-\$1,129,114	-\$1,138,255	-\$1,147,396	-\$1,156,537	-\$1,165,678	-\$1,762,229	-\$1,775,940	-\$1,789,652	-\$1,803,364	-\$1,817,075	-\$1,830,787	-\$21,969,634	(13,408,253)
\$31,211,173	\$31,622,294	\$32,033,415	\$32,444,537	\$32,855,658	\$31,632,711	\$32,020,666	\$32,408,622	\$32,796,578	\$33,184,534	\$33,572,489	\$31,999,811	\$32,362,130	\$32,724,449	\$33,086,768	\$33,449,087	\$33,811,406	\$103,282,853	\$67,901,683
																	1	

-\$18,654, -\$1,780,; \$150,809,! \$148,808, \$71,167,! -\$97,617, -\$2,595,; \$119,763,!	859.91 566.82 792.69 \$0.00 934.94 \$0.00 274.00
\$47,601, \$24,268, -\$885, \$70,984,6	147.62 \$0.00 730.46 \$0.00 207.19 570.89
\$123,044, -\$19,816,; \$103,2 ;	\$0.00
\$208,840,; \$53,440,; -\$98,804,; -\$3,300,; \$160,1 ;	\$0.00 357.29 218.63
\$47,601, \$47,6 0	147.62 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
\$7,021, \$65,776, -\$9,362, (12,46 (11,91 \$39,0 0	\$0.00 827.67 \$0.00 466.00 (5,138) 0,043)
\$11,809, \$7,167, \$77,694, (15,36 (13,40	\$0.00 340.45 \$0.00 (1,659)

King County Class A Biosolids Technology Evaluation

							T.													
Wea	Point Treatment plant Capital Cost			NPV Capital Cost																—
	Operation and Maintenance			\$141,914,692																
	Solids Treatment	Operation and Maintenance, \$/yr		Escalated and Discounted \$119,384,603	\$7,781,156	\$7,857,802	\$7,934,447	\$8,011,093	\$8,087,738	\$8,164,384	\$8,241,030	\$8,317,675	\$8,394,321	\$8,470,966	\$8,547,612	\$8,624,257	\$8,700,903	\$8,777,549	\$8,854,194	\$8,930,840
	Land Application	Land App East/West WA Cost, \$/yr															\$0	\$0	\$0	\$0
	Revenues					-					-									
	CHP Land App	Electricity Sales, \$/yr Land App East/West WA Revenue, \$/yr			-\$1,185,667	-\$1,197,346	-\$1,209,025	-\$1,220,704	-\$1,232,383	-\$1,244,062	-\$1,255,741	-\$1,267,420	-\$1,279,099	-\$1,290,778	-\$1,302,457	-\$1,314,136	-\$1,325,815 \$0	-\$1,337,494 \$0	-\$1,349,173 \$0	-\$1,360,851 \$0
Sou	h Treatment Plant																			
	Capital Cost			<u>NPV Capital Cost</u> \$83,127,778																
	Operation and Maintenance Solids Treatment	Operation and Maintenance, \$/yr		Escalated and Discounted \$69,930,581	\$8.585.519	\$8,718,754	\$8,851,989	\$8,985,223	\$9,118,458	\$9,251,693	\$9,384,928	\$9,518,163	\$9,651,398	\$9,784,633	\$9,917,868	\$10,051,102	\$10,184,337	\$10,317,572	\$10,450,807	\$10,584,042
	Land Application			+00,000,001	\$0,000,020	\$0,120,101	\$0,002,000	\$0,000,E20	\$0,220,100	*0,202,000	\$0,001,020	\$0,020,200	\$5,552,555	\$5,101,000	\$0,021,000	\$10,002,102				
	Land App Revenues	Land App East/West WA Cost, \$/yr															\$0	\$0	\$0	\$0
	Biogas	Renewable Natural Gas Sales, \$/yr Land App East/West WA Revenue, \$/yr			-\$5,632,026	-\$5,719,427	-\$5,806,828	-\$5,894,228	-\$5,981,629	-\$6,069,030	-\$6,156,431	-\$6,243,832	-\$6,331,233	-\$6,418,634	-\$6,506,035	-\$6,593,436	-\$6,680,837	-\$6,768,238	-\$6,855,639	-\$6,943,039
S3 Brig	Land App Itwater Treatment Plant	Land App East/ West WA Revenue, \$/ yr															\$0	\$0	\$0	\$0
	Capital Cost			<u>NPV Capital Cost</u> \$39,098,386																
	Operation and Maintenance			Escalated and Discounted																
	Solids Treatment	Operation and Maintenance, \$/yr		\$32,891,206	\$1,980,025	\$2,057,820	\$2,135,616	\$2,213,412	\$2,291,208	\$2,369,003	\$2,446,799	\$2,524,595	\$2,602,390	\$2,680,186	\$2,757,982	\$2,835,777	\$2,913,573	\$2,991,369	\$3,069,164	\$3,146,960
	Land App	Land App East/West WA Cost, \$/yr															\$0	\$0	\$0	\$0
	Land App	Land App East/West WA Revenue, \$/yr		<u> </u>													\$0	\$0	\$0	\$0
Off-	Ite Thermal Drying and Pyrolysis Capital Cost			NPV Capital Cost																
				\$617,273,184																
	Hauling and Transportation Biosolids	Hauling & Fuel Cost, \$/yr		Escalated and Discounted \$519,276,145								+						\$1,133,355	\$1,148,590	\$1,163,826
	Operation and Maintenance	Operation and Maintenance, \$/yr																\$7,976,332	\$8,083,557	\$8,190,782
	Drying + Pyrolysis Revenues																			
	Biochar	Revenue Year (Contract P3), \$/yr																-\$136,927	-\$138,768	-\$187,478
		Subtotal		\$741,482,534														\$22,953,517	\$23,262,734	\$23,525,080
		<u>Total</u>	\$1,071,510,251	<u> </u>																
Wes	Point Treatment plant	TAD-Batch																		
	Capital Cost	TAD-batch		<u>NPV Capital Cost</u> \$128,586,966																
	Operation and Maintenance Solids Treatment	Operation and Maintenance, \$/yr		Escalated and Discounted \$108,172,760	\$7,820,822	\$7,897,858	\$7,974,895	\$8,051,931	\$8,128,967	\$8,206,004	\$8,283,040	\$8,360,076	\$8,437,113	\$8,514,149	\$8,591,185	\$8,668,221	\$8,745,258	\$8,822,294	\$8,899,330	\$8,976,367
	Land Application			\$108,172,700	\$1,820,822	\$1,851,856	\$1,514,855	\$8,031,931	\$8,128,507	\$8,200,004	\$8,283,040	\$8,300,070	\$6,437,113	\$8,014,149	\$8,551,185	\$8,008,221	\$6,743,236	<i>\$8,822,234</i>	\$8,899,330	\$8,910,301
	Land App Revenues	Land App East/West WA Cost, \$/yr																		l
	CHP	Electricity Sales, \$/yr			-\$1,259,574	-\$1,271,981	-\$1,284,388	-\$1,296,795	-\$1,309,202	-\$1,321,609	-\$1,334,016	-\$1,346,423	-\$1,358,830	-\$1,371,237	-\$1,383,644	-\$1,396,051	-\$1,408,458	-\$1,420,865	-\$1,433,272	-\$1,445,679
Sout	Land App h Treatment Plant	Land App East/West WA Revenue, \$/yr																		
	Capital Cost	TAD-Batch		NPV Capital Cost																
	Operation and Maintenance			\$115,485,340 Escalated and Discounted																t
	Solids Treatment	Operation and Maintenance, \$/yr		\$97,151,122														\$10,437,136	\$10,571,914	\$10,706,693
	Land Application Land App	Land App East/West WA Cost, \$/yr																\$4,771,147	\$4,832,759	\$4,894,371
	Biogas	Renewable Natural Gas Sales, \$/yr																-\$7,215,846	-\$7,309,027	-\$7,402,208
	Land App	Land App East/West WA Revenue, \$/yr																-\$294,642	-\$7,309,027 -\$298,447	-\$302,251
Brig	twater Treatment Plant Capital Cost	MAD		NPV Capital Cost																()
				\$39,098,386																
	Operation and Maintenance Solids Treatment	Operation and Maintenance, \$/yr		Escalated and Discounted \$32,891,206	\$1,980,025	\$2,057,820	\$2,135,616	\$2,213,412	\$2,291,208	\$2,369,003	\$2,446,799	\$2,524,595	\$2,602,390	\$2,680,186	\$2,757,982	\$2,835,777	\$2,913,573	\$2,991,369	\$3,069,164	\$3,146,960
	Land Application	Land App East/West WA Cost, \$/yr											•				-			
S4	Land App Revenues						<u> </u>	<u> </u>		 					 					
	Land App Ite Composting (Brightwater Solids)	Land App East/West WA Revenue, \$/yr																		
	Capital Cost	Composting		NPV Capital Cost																
	Hauling and Transportation			\$119,906,031 Escalated and Discounted																
	Biosolids & Woodchi	ps Hauling & Fuel Cost, \$/yr		\$100,869,993														\$441,251	\$452,726	\$464,202
	Operation and Maintenance Composting	Operation and Maintenance, \$/yr		<u>├</u>	+			1										\$4,133,571	\$4,241,072	\$4,348,573
	Revenues Woodchips	Tipping Fee, \$/yr																-\$588,359	-\$603,661	-\$618,962
	Composting	Revenue Year (Commercial), \$/yr																-\$279,995	-\$287,277	-\$589,117
044	Composting ite Soli Blending (West Point Solids)	Revenue Year (Consumer), \$/yr																-\$197,214	-\$202,343	-\$484,101
	Capital Cost	Soil Blending		<u>NPV Capital Cost</u>																
	Hauling and Transport			\$58,462,405 Escalated and Discounted																<u>⊢</u>
	Biosolids & Feedstoc	ks Hauling & Fuel Cost, \$/yr		\$49,181,032														\$846,764	\$854,158	\$861,552
	Feedstock Purchase Fine Sand	Material Purchase, \$/yr																\$513,903	\$518,391	\$522,878
	Operation and Maintenance	Operation and Maintonenee, #///																		
	Soil Blending Revenues	Operation and Maintenance, \$/yr		<u>├</u>	+			1										\$5,570,677	\$5,619,320	\$5,667,963
	Soil Blend Soil Blend	Revenue Year (Commercial), \$/yr Revenue Year (Consumer), \$/yr																-\$403,875 -\$261,711	-\$407,402 -\$263,996	-\$821,857 -\$621,324
		Subtotal		\$388,266,112	1	l	1	1	1	1	1	1		1	1			\$27,865,605	-\$263,996 \$28,253,411	-\$621,324 \$27,304,059
		Total	\$757,081,691	+														12.,200,000		
L																				

King County Class A Biosolids Technology Evaluation

\$9,007,485	\$9,084,131	\$9,160,777	\$9,237,422	\$9,314,068	\$9,390,713	\$9,467,359	\$9,544,004	\$9,620,650	\$9,697,296	\$9,773,941	\$9,850,587	\$9,927,232	\$10,003,878	\$10,080,524	\$10,157,169	\$10,233,815	\$198,814,537 \$0	\$122,420,640.57 \$0.00
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0.00 \$0.00
-\$1,372,530 \$0	-\$1,384,209 \$0	-\$1,395,888 \$0	-\$1,407,567 \$0	-\$1,419,246 \$0	-\$1,430,925 \$0	-\$1,442,604 \$0	-\$1,454,283 \$0	-\$1,465,962 \$0	-\$1,477,641 \$0	-\$1,489,320 \$0	-\$1,500,999 \$0	-\$1,512,678 \$0	-\$1,524,357 \$0	-\$1,536,036 \$0	-\$1,547,715 \$0	-\$1,559,394 \$0	-\$30,294,694 \$0	-\$18,654,047.74 \$0.00
40	\$0	\$0	30	φU	\$0	\$ 0	\$0	\$0	\$0	φU	30	φU	40	40		φυ	\$168,519,843	\$103,766,593
																	-	
\$10,717,277	\$10,850,512	\$10,983,747	\$11,116,981	\$11,250,216	\$11,383,451	\$11,516,686	\$11,649,921	\$11,783,156	\$11,916,391	\$12,049,626	\$12,182,860	\$12,316,095	\$12,449,330	\$12,582,565	\$12,715,800	\$12,849,035	\$241,850,408	\$148,808,792.69
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0.00 \$0.00
-\$7,030,440	-\$7,117,841	-\$7,205,242	-\$7,292,643	-\$7,380,044	-\$7,467,445	-\$7,554,846	-\$7,642,247	-\$7,729,648	-\$7,817,049	-\$7,904,450	-\$7,991,851	-\$8,079,251	-\$8,166,652	-\$8,254,053	-\$8,341,454	-\$8,428,855	\$0 -\$158,651,764	\$0.00 -\$97,617,274.00
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$83,198,643	\$0.00 \$51,191,519
\$3,224,756	\$3,302,551	\$3,380,347	\$3,458,143	\$3,535,938	\$3,613,734	\$3,691,530	\$3,769,325	\$3,847,121	\$3,924,917	\$4,002,712	\$4,080,508	\$4,158,304	\$4,236,099	\$4,313,895	\$4,391,691	\$4,469,486	\$77,522,124	\$47,601,147.62
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0.00 \$0.00
\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0 \$0	\$0.00 \$0.00
																	\$77,522,124	\$47,601,148
\$1,179,061	\$1,194,297	\$1,209,533	\$1,224,768	\$1,240,004	\$1,255,239	\$1,270,475	\$1,285,711	\$1,300,946	\$1,316,182	\$1,331,417	\$1,346,653	\$1,361,888	\$1,377,124	\$1,392,360	\$1,407,595	\$1,422,831	\$25,561,855 \$0	\$16,414,497.08 \$0.00
\$8,298,007	\$8,405,232	\$8,512,457	\$8,619,682	\$8,726,907	\$8,834,132	\$8,941,358	\$9,048,583	\$9,155,808	\$9,263,033	\$9,370,258	\$9,477,483	\$9,584,708	\$9,691,933	\$9,799,158	\$9,906,383	\$10,013,608	\$179,899,401 \$0	\$115,522,063.86 \$0.00
-\$189,933	-\$192,387	-\$194,841	-\$197,295	-\$199,750	-\$404,408	-\$409,316	-\$414,225	-\$419,133	-\$424,042	-\$428,950	-\$542,324	-\$548,459	-\$554,595	-\$560,731	-\$566,866	-\$573,002	-\$7,283,432	(4,468,103)
\$23,833,683	\$24,142,285	\$24,450,888	\$24,759,491	\$25,068,093	\$25,174,492	\$25,480,640	\$25,786,789	\$26,092,937	\$26,399,085	\$26,705,234	\$26,902,917	\$27,207,839	\$27,512,760	\$27,817,681	\$28,122,602	\$28,427,524	\$198,177,824	\$127,468,458
													1	Ī		1		
																	-	
\$9,053,403	\$9,130,439	\$9,207,476	\$9,284,512	\$9,361,548	\$9,438,584	\$9,515,621	\$9,592,657	\$9,669,693	\$9,746,730	\$9,823,766	\$9,900,802	\$9,977,839	\$10,054,875	\$10,131,911	\$10,208,947	\$10,285,984	¢100.000.000	6100 044 705 50
\$9,053,403	\$9,130,439	\$9,207,476	\$9,264,512	\$9,301,548	\$9,436,564	\$9,515,621	\$9,592,657	\$9,009,093	\$9,740,730	\$9,823,700	\$9,900,802	\$9,977,839	\$10,054,875	\$10,131,911	\$10,208,947	\$10,285,984	\$199,828,036 \$0	\$123,044,705.59 \$0.00
																	\$0 \$0	\$0.00 \$0.00
-\$1,458,086	-\$1,470,493	-\$1,482,900	-\$1,495,307	-\$1,507,714	-\$1,520,121	-\$1,532,528	-\$1,544,935	-\$1,557,342	-\$1,569,749	-\$1,582,156	-\$1,594,563	-\$1,606,970	-\$1,619,377	-\$1,631,784	-\$1,644,191	-\$1,656,598	-\$32,183,084 \$0	-\$19,816,829.34 \$0.00
																	\$167,644,952	\$103,227,876
\$10,841,472	\$10,976,251	\$11,111,030	\$11,245,809	\$11,380,587	\$11,515,366	\$11,650,145	\$11,784,924	\$11,919,703	\$12,054,482	\$12,189,260	\$12,324,039	\$12,458,818	\$12,593,597	\$12,728,376	\$12,863,155	\$12,997,934	\$234,350,690	\$150,533,236.19
\$4,955,982	\$5,017,594	\$5,079,206	\$5,140,817	\$5,202,429	\$5,264,041	\$5,325,652	\$5,387,264	\$5,448,876	\$5,510,488	\$5,572,099	\$5,633,711	\$5,695,323	\$5,756,934	\$5,818,546	\$5,880,158	\$5,941,769	\$107,129,166	\$68,813,537.58
-\$7,495,389 -\$306,056	-\$7,588,570 -\$309,861	-\$7,681,751 -\$313,666	-\$7,774,932 -\$317,471	-\$7,868,113 -\$321,276	-\$7,961,294 -\$325,080	-\$8,054,475 -\$328,885	-\$8,147,656 -\$332,690	-\$8,240,837 -\$336,495	-\$8,334,018 -\$340,300	-\$8,427,199 -\$344,105	-\$8,520,380 -\$347,909	-\$8,613,561 -\$351,714	-\$8,706,742 -\$355,519	-\$8,799,924 -\$359,324	-\$8,893,105 -\$363,129	-\$8,986,286 -\$366,933	-\$162,021,312 -\$6,615,753	-\$104,073,055.74 -\$4,249,574.29
					,												\$172,842,791	\$111,024,144
																	-	
\$3,224,756	\$3,302,551	\$3,380,347	\$3,458,143	\$3,535,938	\$3,613,734	\$3,691,530	\$3,769,325	\$3,847,121	\$3,924,917	\$4,002,712	\$4,080,508	\$4,158,304	\$4,236,099	\$4,313,895	\$4,391,691	\$4,469,486	\$77,522,124 \$0	\$47,601,147.62
																	\$0 \$0 \$0	\$0.00 \$0.00 \$0.00
																	\$0	\$0.00
																	\$77,522,124	\$47,601,148
																	1	
\$475,677	\$487,153	\$498,628	\$510,104	\$521,579	\$533,055	\$544,530	\$556,006	\$567,481	\$578,956	\$590,432	\$601,907	\$613,383	\$624,858	\$636,334	\$647,809	\$659,285	\$11,005,356 \$0	\$7,021,548.40 \$0.00
\$4,456,073	\$4,563,574	\$4,671,074	\$4,778,575	\$4,886,076	\$4,993,576	\$5,101,077	\$5,208,578	\$5,316,078	\$5,423,579	\$5,531,079	\$5,638,580	\$5,746,081	\$5,853,581	\$5,961,082	\$6,068,582	\$6,176,083	\$103,096,544 \$0	\$65,776,827.67 \$0.00
-\$634,263 -\$603,681	-\$649,565 -\$618,244	-\$664,866 -\$632,808	-\$680,167 -\$647,371	-\$695,469 -\$661,935	-\$710,770 -\$1,014,747	-\$726,071 -\$1,036,593	-\$741,372 -\$1,058,438	-\$756,674 -\$1,080,283	-\$771,975 -\$1,102,128	-\$787,276 -\$1,123,974	-\$802,578 -\$1,527,759	-\$817,879 -\$1,556,886	-\$833,180 -\$1,586,013	-\$848,482 -\$1,615,140	-\$863,783 -\$1,644,267	-\$879,084 -\$1,673,394	-\$14,674,437 -\$20,340,047	-\$9,362,466.00 -\$12,465,137.79
-\$496,068	-\$508,035	-\$520,003	-\$531,970	-\$543,938	-\$952,980	-\$973,496	-\$994,011	-\$1,014,527	-\$1,035,042	-\$1,055,558	-\$1,614,110	-\$1,644,883	-\$1,675,657	-\$1,706,430	-\$1,737,203	-\$1,767,977	-\$19,655,546 \$59,431,870	-\$11,910,043.36 \$39,060,729
\$868,946	\$876,340	\$883,734	\$891,128	\$898,522	\$905,916	\$913,310	\$920,704	\$928,098	\$935,492	\$942,886	\$950,279	\$957,673	\$965,067	\$972,461	\$979,855	\$987,249	\$18,340,134	\$11,809,836.66
	\$531,853	\$536,340			\$549,802													
\$527,365			\$540,828	\$545,315		\$554,290	\$558,777	\$563,265	\$567,752	\$572,239	\$576,727	\$581,214	\$585,702	\$590,189	\$594,676	\$599,164	\$11,130,671	\$7,167,417.67
\$5,716,607	\$5,765,250	\$5,813,893	\$5,862,536	\$5,911,179	\$5,959,822	\$6,008,466	\$6,057,109	\$6,105,752	\$6,154,395	\$6,203,038	\$6,251,681	\$6,300,325	\$6,348,968	\$6,397,611	\$6,446,254	\$6,494,897	\$120,655,743	\$77,694,340.45
-\$828,910 -\$626,656	-\$835,964 -\$631,988	-\$843,017 -\$637,321	-\$850,070 -\$642,653	-\$857,123 -\$647,985	-\$1,296,265 -\$1,119,973	-\$1,306,845 -\$1,129,114	-\$1,317,425 -\$1,138,255	-\$1,328,005 -\$1,147,396	-\$1,338,585 -\$1,156,537	-\$1,349,165 -\$1,165,678	-\$1,812,993 -\$1,762,229	-\$1,827,099 -\$1,775,940	-\$1,841,206 -\$1,789,652	-\$1,855,312 -\$1,803,364	-\$1,869,419 -\$1,817,075	-\$1,883,525 -\$1,830,787	-\$24,874,060 -\$21,969,634	(15,361,659) (13,408,253)
\$27,671,172	\$28,038,284	\$28,405,397	\$28,772,509	\$29,139,622	\$27,872,667	\$28,216,614	\$28,560,561	\$28,904,508	\$29,248,455	\$29,592,402	\$27,975,716	\$28,294,026	\$28,612,337	\$28,930,647	\$29,248,958	\$29,567,268	\$103,282,853	\$67,901,683

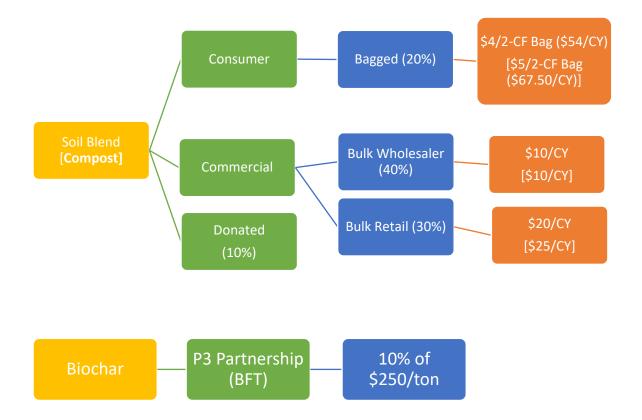
-\$97,617,2 \$51,19	\$0.00 \$0.00 \$0.00 74.00 \$0.00 1,519
	47.62 \$0.00 \$0.00 \$0.00 \$0.00 1,148
\$115,522,0	97.08 \$0.00 63.86 \$0.00 3,103) 8,458
-\$19,816,8	05.59 \$0.00 \$0.00 \$0.00 29.34 \$0.00
\$150,533,2 \$68,813,5	36.19 37.58
	47.62 \$0.00
\$47,60	\$0.00 \$0.00 1,148 48.40
\$65,776,8	\$0.00 27.67 \$0.00 66.00 37.79 43.36
\$11,809,8 \$7,167,4 \$77,694,3 (15,36: (13,408 \$67,90	17.67 40.45 1,659) 3,253)

King County Class A Biosolids Technology Evaluation

Performa	ance Summary			1	2	3	4
O&M Costs	Based on 2050 Flows	and Loads	Notes	100% Class B application with MAD at all three plants	TAD-Batch , Cambi, and Off- site Soil Blending or Composting	Off-site Pyrolysis	TAD-Batch and Off-site Soil Blending or Composting
Element				S1	\$2	S 3	S4
West Point Tre	eatment plant						
000	eration and Maintenance						
	Solids Treatment	Operation and Maintenance, \$/yr		\$8,220,708	\$7.669.298	\$8,220,708	\$7,669,298
	TAD-Batch	Operation and Maintenance, \$/yr		\$0	\$365,490	\$0	\$365,490
	TAB Buton			4 0	\$000,100	40	\$000,100
Pro	cess Fuel Consumption						
	Solids Treatment	Natural Gas Consumption, \$/yr		\$0	\$0	\$0	\$0
						• -	
Elec	ctricity Consumption						
	Solids Treatment	Electricity Consumption, \$/yr		\$821,834	\$917,555	\$821,834	\$917,555
Elec	ctricity Sales						
	СНР	Electricity Sales Revenue, \$/yr		\$1,559,394	\$1,656,598	\$1,559,394	\$1,656,598
Che	emical Usage						
	Dewatering	Polymer Use, \$/yr		\$1,191,274	\$1,111,368	\$1,191,274	\$1,111,368
	Dewatering (TAD)	Polymer Use, \$/yr		\$0	\$222,274	\$0	\$222,274
len	d Application						
Lan	Agriculture	Land App Eastern WA Cost, \$/yr		\$3.624,176			
	Forestry	Land App Western WA Cost, \$/yr		\$457,277			
	Agriculture	Land App Eastern WA Revenue, \$/yr		\$99,997	To Off-site Soil Blending	To Off-site Pyrolysis	To Off-site Soil Blending
	Forestry	Land App Western WA, Revenue, \$/yr		\$48,875			
South Treatm	ent Plant						
Ope	eration and Maintenance						
	Solids Treatment	Operation and Maintenance, \$/yr		\$9,717,031	\$9,717,031	\$9,717,031	\$9,717,031
	THP-MAD	Operation and Maintenance, \$/yr		\$0	\$2,479,298	\$0	
Pro	Cess Fuel Consumption Solids Treatment	Natural Gas Consumption, \$/yr		\$515,568	\$924,448	\$515,568	\$746,378
				\$910,000 000,000	<i>φσ24,44</i> 0	4010,000	φ140,310
Pot	able Water Usage						
. •	THP	Potable Water, \$/yr		\$0	\$456,495	\$0	0.0
					· · · ·		
Biog	gas Upgrading Sales				1		
	Biogas	Renewable Natural gas Value, \$/yr		\$994,558	\$1,006,652	\$994,558	\$1,060,332
	Biogas	Renwable Natural Gas RINs, \$/yr		\$5,964,479	\$6,037,011	\$5,964,479	\$6,358,932
	Biogas	Renwable Natural Gas CA LCFS, \$/yr		\$1,469,818	\$1,487,692	\$1,469,818	\$1,567,022
Elec	ctricity Consumption						
	Solids Treatment	Electricity Consumption, \$/yr		\$984,123	\$1,467,406	\$984,123	\$1,017,100
0.							
Che	mical Usage	Polymor Lloo ¢ /ur		\$0	\$1,444,086	\$0	\$0
	Predewatering	Polymer Use, \$/yr		φU	\$1,444,080	φU	\$U

King County Class A Biosolids Technology Evaluation

	Dewatering	Polymer Use, \$/yr	\$1,632,313	\$1,543,797	\$1,632,313	\$1,517,425
Land App	plication					
	Agriculture	Land App Eastern WA Cost, \$/yr	\$5,456,583	\$2,626,216		\$3,381,685
	Forestry	Land App Western WA Cost, \$/yr	\$688,479	\$1,988,161	To Off site Domehasia	\$2,560,085
	Agriculture	Land App Eastern WA Revenue, \$/yr	\$150,556	\$72,462	To Off-site Pyrolysis	\$93,306
	Forestry	Land App Western WA, Revenue, \$/yr	\$73,586	\$212,499		\$273,627
ghtwater Treatm	nent Plant					
Onerette	n and Maintananaa					
Operatio	n and Maintenance Solids Treatment	Operation and Maintenance, \$/yr	\$3,649,507	\$3.649.507	\$3.649.507	\$3.649.507
	Solids Treatment	Operation and Maintenance, \$/ yr	\$3,849,507	\$3,649,507	\$3,649,507	\$3,649,507
Process	Fuel Consumption					
11000331	Solids Treatment	Natural Gas Consumption, \$/yr	\$0	\$0	\$0	\$0
	Solids Treatment		\$ 0		4 0	\$0
Electricit	y Consumption					
	Solids Treatment	Electricity Consumption, \$/yr	\$277,341	\$277,341	\$277,341	\$277,341
	- share in Suthionit	······································	*****	÷====;;;;;;==	÷=: 1,0 12	÷211,012
Chemica	Usage					
	Dewatering	Polymer Use, \$/yr	\$542,639	\$542,639	\$542,639	\$542,639
	<u> </u>				- /	
Land App	plication					
	Agriculture	Land App Eastern WA Cost, \$/yr	\$2,023,400			
	Forestry	Land App Western WA Cost, \$/yr	\$255,301			
	Agriculture	Land App Eastern WA Revenue, \$/yr	\$55,829	To Off-site Composting	To Off-site Pyrolysis	To Off-site Composting
	Forestry	Land App Western WA, Revenue, \$/yr	\$27,287			
			· · · · · · ·			
Site Compostin	g (Brightwater Solids					
	and Transportation	, 				
	Biosolids	Hauling Cost, \$/yr		\$238,448		\$238,448
	Biosolids	Fuel Cost (Diesel), \$/yr		\$28,716		\$28,716
	Woodchips	Hauling Cost, \$/yr		\$310,317		\$310,317
	Woodchips	Fuel Cost (Diesel), \$/yr		\$81,804		\$81,804
Operatio	n and Maintenance	1				
	Composting	Operation and Maintenance, \$/yr		\$5,592,946		\$5,592,946
	Composting	Equipment Upgrades, \$/yr		\$80,000		\$80,000
Electricit	y Consumption					
	Composting	Electricity Costs, \$/yr		\$143,101		\$143,101
Process	Fuel Consumption					
	Composting	Fuel Consumption (Diesel), \$/yr		\$360,036		\$360,036
_						
Revenue						A070.00.1
	Woodchips	Tipping Fee, \$/yr		\$879,084		\$879,084
	Compost	Revenue Year 1-2 (Commercial)		\$418,348		\$418,348
	Compost	Revenue Year 3-8 (Commercial)		\$836,697		\$836,697
	Compost	Revenue Year 9-14 (Commercial)		\$1,255,045		\$1,255,045
	Compost	Revenue Year 15-20 (Commercial)		\$1,673,394		\$1,673,394
	Compost	Revenue Year 1-2 (Consumer)		\$294,663		\$294,663
	Compost	Revenue Year 3-8 (Consumer)		\$687,547		\$687,547


King County Class A Biosolids Technology Evaluation

1/21/2020

	Compact	Revenue Year 9-14 (Consumer)	\$1,178,651		\$1,178,651
	Compost	, , , , , , , , , , , , , , , , , , ,	 \$1,178,651		. , ,
	Compost	Revenue Year 15-20 (Consumer)	\$1,767,977		\$1,767,977
	ling (West Point Solids	8)			
Hauling	and Transport	United Onet A for	¢200.444		\$200.444
	Biosolids	Hauling Cost, \$/yr	\$398,444		\$398,444
	Biosolids	Fuel Cost (Diesel), \$/yr	\$43,074		\$43,074
	Woodchips	Hauling Cost, \$/yr	\$98,702		\$98,702
	Woodchips	Fuel Cost (Diesel), \$/yr	\$47,308		\$47,308
	Fine Sand	Hauling Cost, \$/yr	\$322,740		\$322,740
	Fine Sand	Fuel Cost (Diesel), \$/yr	\$76,981		\$76,981
Foodata	ck Purchase				
reeasio	Fine Sand	Feedstock Purchase, \$/yr	 \$399,443		\$399,443
		Feedstock Purchase, \$/yr	\$199.721		\$199,443
	Saw Dust	reeustock rurchase, \$/ yr	 \$199,721		\$199,721
Operatio	on and Maintenance				
operation	Soil Blending	Operation and Maintenance, \$/yr	\$6,147,421		\$6,147,421
	Soil Blending	Equipment Upgrades, \$/yr	\$40.000		\$40.000
	oon bionang	-4	\$10,000		\$10,000
Electrici	ty Consumption				
	Soil Blending	Electricity Costs, MWh/yr	\$0		\$0
Process	Fuel Consumption				
	Soil Blending	Fuel Consumption (Diesel), \$/yr	\$307,476		\$307,476
Revenue					
Revenue	Soil Blend	Revenue Year 1-2 (Commercial)	\$470,881		\$470,881
	Soil Blend	Revenue Year 3-8 (Commercial)	\$941,763		\$941,763
	Soil Blend	Revenue Year 9-14 (Commercial)	 \$1,412,644		\$1,412,644
	Soil Blend	Revenue Year 15-20 (Commercial)			
		. ,	\$1,883,525		\$1,883,525
	Soil Blend	Revenue Year 1-2 (Consumer)	\$305,131		\$305,131
	Soil Blend	Revenue Year 3-8 (Consumer)	\$711,973		\$711,973
	Soil Blend	Revenue Year 9-14 (Consumer)	\$1,220,524		\$1,220,524
	Soil Blend	Revenue Year 15-20 (Consumer)	\$1,830,787		\$1,830,787
Site Thermal D	Orying and Pyrolysis				
Hauling	and Transport				
naumg	Biosolids	Hauling Cost, \$/yr		\$1,286,429	
	Biosolids	Fuel Cost (Diesel), \$/yr		\$136,402	
	Biosolius	ruei cost (Diesei), \$/ yi		\$ 1 30,402	
Operatio	on and Maintenance				
	Drying + Pyrolysis	Operation and Maintenance, \$/yr		\$2,990,705	
	Drying + Pyrolysis	Spare parts and replacement, \$/yr		\$1,500,000	
Electrici	ty Consumption				
	Drying + Pyrolysis	Electricity Costs, \$/yr		\$3,521,388	
P	Final Comparison Allow				
Process	Fuel Consumption	Notural Cas Consumption # ////		¢0.004.546	
	Drying + Pyrolysis	Natural Gas Consumption, \$/yr		\$2,001,516	
Revenue	99				
Nevenu	Biochar	Revenue Year 1-2 (Contract P3)		\$171,901	
	Biochar	Revenue Year 3-8 (Contract P3)		\$229,201	

King County Class A Biosolids Technology Evaluation

	Biochar	Revenue Year 9-14 (Contract P3)		\$458,402	
	Biochar	Revenue Year 15-20 (Contract P3)		\$573,002	

Base Year	Estimate Year
2020	2020

	Estimate - AACEI (Class 5						
Project Name:	KC Class A Biosolids Tech Evaluation			Date:		1/2/2020		
Location:	West Point			Estimator:	Ste	ve Krugel and Trung Le		
Description:	MAD upgrades			Version:	Revision 01			
	DIRECT: SUBTOTAL CONSTR	UCTION COST						
Item No.	Item Description	Quantity	Units	Unit Cost		Item Cost		
1	MAD Digester - West Point (2 Additional 2.4 MG Digesters)	4.80	\$/MG	800000		38,400,000		
4					\$	-		
				tion Cost Markup	\$	11,712,000		
				Construction Costs		50,112,000		
	Allowance for Indeterminates (Design Allowance)							
				Street Use Permit		-		
	ESTIMATED P	ROBABLE COS	T OF CC	INSTRUCTION BID	\$	62,640,000		
	DIRECT: SUBTOTAL ADDITIONAL C	ONSTRUCTION	I COST	S				
	Mitigation Construction Contracts							
	Construction Change Order Allowance							
	Material Pricing Uncertainty Allowance							
	\$	68,904,000						
	\$	6,959,304						
	Owner Furnished Equipment							
				ency Construction		-		
				on to Construction	\$	75,863,304		
	DIRECT: SUBTOTAL OTHER CA		-					
		KC/W		ct Implementation		-		
				Misc. Capital Costs		137,808		
		TOTAL DIREC	T CONS	STRUCTION COSTS	\$	76,001,000		
	INDIRECT: NON-CONSTRU				-			
				ruction Consulting		22,442,520		
				Consulting Services		-		
		Permitting	g & Oth	er Agency Support		689,040		
				Right-of-Way		-		
				ervice & Materials		551,232 585,684		
				WTD Staff Labor	Ŧ	7,923,941		
		Subtota		Construction Costs	\$	32,192,418		
			Р	roject Contingency		32,458,059		
				Initiatives	\$	1,263,103		
	TOTAL			TRUCTION COSTS		65,913,580		
		тс	DTAL I	PROJECT COST	\$	141,914,692		

	Estimate - AACEI Clas	s 5					
Project Name:	KC Class A Biosolids Tech Evaluation			Date:	1/2/2020		
Location:	West Point			Estimator:	Steve Krugel and Trung Le		
Description:	ion: MAD upgrades Version:				Revision 01		
	CONSTRUCTION COST	s					
Item No.	Item Description	Item Description Quantity Units Unit Cost			Item Cost		
1	MAD Digester - West Point (2 Additional 2.4 MG Digesters)	4.80	\$/MG	\$ 8,000,000.00	\$	38,400,000	
2							
Item Subtotal Construction Costs (Year 2020)						38,400,000	
	DIRECT: CONSTRUCTION COST	MARK-UPS			_		
General Conditions 10% 1.1						3,840,000	
	Mobilization/D	emobilization	10%	1.1	\$	3,840,000	
	Overhead	& Profit (OHP)	8%	1.08	\$	3,072,000	
		Insurance		1.015	\$	576,000	
		Bonding	1.0%	1.01	\$	384,000	
	Escalation Multiplier	from ENR-CCI	0%	1.0000	\$	-	
	Iten	Subtotal Con	structio	on Costs (Year 2020)	\$	50,112,000	
	Dir	ect: Subtot	al Cor	nstruction Costs	\$	50,112,000	

Base Year	Estimate Year
2020	2020

	Estimate - AACEI	Class 5						
Project Name:	KC Class A Biosolids Tech Evaluation			Date:		1/2/2020		
Location:	South Plant			Estimator:	Ste	eve Krugel and Trung Le		
Description:	MAD upgrades			Version:		Revision 01		
	DIRECT: SUBTOTAL CONSTR	UCTION COST						
Item No.	Item Description	Quantity	Units	Unit Cost		Item Cost		
1	MAD Digester - South Plant (1 Additional 2.75 MG Digesters)	2.75	\$/MG	800000		22,000,000		
2					\$	-		
				tion Cost Markup	\$	6,710,000		
				Construction Costs		28,710,000		
	Allowance for Indeterminates (Design Allowance)							
				Street Use Permit		-		
				INSTRUCTION BID	\$	35,887,500		
	DIRECT: SUBTOTAL ADDITIONAL C							
	Mitigation Construction Contracts Construction Change Order Allowance							
		3,588,750						
		39,476,250 3,987,101						
	Owner Furnished Equipment Outside Agency Construction							
	c.			on to Construction	\$ \$	43,463,351		
	DIRECT: SUBTOTAL OTHER C				Ş	43,403,331		
	Direct. Sobioticae officia d		-	ct Implementation	ć	-		
		KC/W		Misc. Capital Costs		78,953		
		TOTAL DIREC		TRUCTION COSTS	Ś	43,542,000		
	INDIRECT: NON-CONSTRU				Ļ.	10,012,000		
		Design an	d Const	ruction Consulting	Ś	13,941,056		
				Consulting Services		-		
		Permitting	g & Oth	er Agency Support		394,763		
				Right-of-Way				
			Misc. S	ervice & Materials	\$	315,810		
	Non-WTD Support							
				WTD Staff Labor		4,851,334		
		Subtota	-	Construction Costs	\$	19,838,510		
			Р	roject Contingency		19,014,244		
				Initiatives		732,720		
	TOTAL			STRUCTION COSTS	\$	39,585,474		
		тс	DTAL I	PROJECT COST	\$	83,127,778		

	Estimate - AACEI Clas	s 5				
Project Name:	KC Class A Biosolids Tech Evaluation			Date:	1/2/2020	
Location:	South Plant Est				Steve Krugel and Trung Le	
Description:	scription: MAD upgrades Ver					Revision 01
	CONSTRUCTION COST	s				
Item No.	Item Description	Quantity	Units	Unit Cost	Item Cost	
1	MAD Digester - South Plant (1 Additional 2.75 MG Digesters)	2.75	\$/MG	\$ 8,000,000.00	\$	22,000,000
2					\$	-
Item Subtotal Construction Costs (Year 2020)						22,000,000
	DIRECT: CONSTRUCTION COST	MARK-UPS				
	General Conditions 10% 1.1					
	Mobilization/D	emobilization	10%	1.1	\$	2,200,000
	Overhead	& Profit (OHP)	8%	1.08	\$	1,760,000
		Insurance	1.5%	1.015	\$	330,000
		Bonding	1.0%	1.01	\$	220,000
	Escalation Multiplier	from ENR-CCI	0%	1.0000	\$	-
	Iten	Subtotal Con	structio	on Costs (Year 2020)	\$	28,710,000
	Dir	ect: Subtot	al Cor	nstruction Costs	\$	28,710,000

Base Year	Estimate Year
2020	2020

	Estimate - AACEI	Class 5						
Project Name:	KC Class A Biosolids Tech Evaluation			Date:		1/2/2020		
Location:	Brightwater			Estimator:	Stev	e Krugel and Trung Le		
Description:	MAD Upgrades			Version:		Revision 01		
	DIRECT: SUBTOTAL CONST	RUCTION COST	S					
Item No.	Item Description	Quantity	Units	Unit Cost	-	Item Cost		
1	MAD Digester - Brightwater (1 Additional 1.25MG Digesters)	1.25	\$/MG	8000000	\$	10,000,000		
2	2				\$			
				tion Cost Markup	\$	3,050,000		
				Construction Costs	\$	13,050,000		
	Allowan	e for Indeterm	inates	Design Allowance)	\$	3,262,500		
	Street Use Permit							
	ESTIMATED PROBABLE COST OF CONSTRUCTION BID							
	DIRECT: SUBTOTAL ADDITIONAL							
	Mitigation Construction Contracts							
	Construction Change Order Allowance							
	Material Pricing Uncertainty Allowance Subtotal Primary Construction Amount							
	Subtotal Primary Construction Amount							
	Construction Sales Tax							
	Owner Furnished Equipment							
	Outside Agency Construction							
	Subtotal KC Contribution to Construction							
	Direct: Sobiotal Other C		-	ct Implementation	ć			
		KC/W		Misc. Capital Costs		35,888		
	TOTAL DIRECT CONSTRUCTION COSTS							
	INDIRECT: NON-CONSTRU				Ŷ	19,792,000		
			d Cons	truction Consulting	Ś	7,109,830		
				Consulting Services		.,,		
		Permittin	g & Oth	er Agency Support	\$	179,438		
			-	Right-of-Way	\$			
			Misc. S	ervice & Materials	\$	143,550		
				Non-WTD Support	\$	152,522		
				WTD Staff Labor	\$	2,437,165		
		Subtoto	-	Construction Costs	\$	10,022,504		
			Р	roject Contingency	\$	8,944,338		
				Initiatives	\$	339,587		
	ΤΟΤΑ			STRUCTION COSTS	\$	19,306,430		
		TC	DTAL I	PROJECT COST	\$	39,098,386		

	Estimate - AACEI Clas	s 5				
Project Name:	ct Name: KC Class A Biosolids Tech Evaluation			Date:	1/2/2020	
Location:	Brightwater			Estimator:	Steve Krugel and Trung	
Description:	scription: MAD Upgrades				Revision 01	
	CONSTRUCTION COST	s				
Item No.	Item Description	Quantity	Units Unit Cost			Item Cost
1	MAD Digester - Brightwater (1 Additional 1.25MG Digesters)	1.3	\$/MG	\$ 8,000,000.00	\$	10,000,000
2	2					
Item Subtotal Construction Costs (Year 2020)						10,000,000
	DIRECT: CONSTRUCTION COST	MARK-UPS			-	
General Conditions 10% 1.1						1,000,000
	Mobilization/D	emobilization	10%	1.1	\$	1,000,000
	Overhead	& Profit (OHP)	8%	1.08	\$	800,000
		Insurance	1.5%	1.015	\$	150,000
		Bonding	1.0%	1.01	\$	100,000
	Escalation Multiplier	from ENR-CCI	0%	1.0000	\$	-
	Iten	Subtotal Con	structio	on Costs (Year 2020)	\$	13,050,000
	Dir	ect: Subtot	al Cor	struction Costs	Ś	13,050,000

Base Year	Estimate Year
2020	2020

	Estimate - AACI	El Class 5					
Project Name:	KC Class A Biosolids Tech Evaluation			Date:		1/2/2020	
Location:	West Point			Estimator:	Steve	e Krugel and Trung Le Revision 01	
Description:	Description: TAD System at West Point Version:						
Item No.	Item Description	Quantity	Units	Unit Cost		Item Cost	
	MAD to TAD Digester Upgrades		LS	16900000		16,900,000	
	TAD Batch Tanks	Batch Tanks 1 LS 1920000				19,200,000	
3	3					-	
	\$	11,010,500					
				Construction Costs	\$	47,110,500	
	Allowance	e for Indeterm	ninates (Design Allowance)	\$	9,422,100	
				Street Use Permit		-	
	ESTIMATED P	ROBABLE COS	T OF CC	ONSTRUCTION BID	\$	56,532,600	
	DIRECT: SUBTOTAL ADDITIONAL	L CONSTRUCT	ION CO	STS			
		U		truction Contracts		- 5,653,260	
	Construction Change Order Allowance						
				ertainty Allowance	\$ \$	-	
Subtotal Primary Construction Amount						62,185,860	
Construction Sales Tax Owner Furnished Equipment						6,280,772	
		-					
	-			ency Construction	\$	-	
				on to Construction	\$	68,466,632	
	DIRECT: SUBTOTAL OTHER						
		KC/W		ct Implementation		-	
				Misc. Capital Costs	\$	124,372	
				STRUCTION COSTS	\$	68,591,000	
	INDIRECT: NON-CONST		-				
L		Design ar		ruction Consulting		20,557,872	
		Demosit		Consulting Services	\$	-	
		Permittin	g & Uth	er Agency Support Right-of-Way	\$	621,859	
			Mice C	Right-of-Way ervice & Materials	\$	-	
				ervice & Materials Non-WTD Support	\$ \$	497,487 528,580	
				WTD Staff Labor		7,237,417	
├ ───		Subtoti	al Non-(Construction Costs	ې \$	29,443,215	
		Jubioli		roject Contingency	, \$	29,410,265	
				Initiatives	\$	1,142,483	
	τοται	INDIRECT NO	N-CON	TRUCTION COSTS	\$	59,995,963	
	1014			PROJECT COST	\$	128,586,966	
		10	JIAL	-ROJECT COST	Ş	120,300,900	

Base Year	Estimate Year
2020	2020

	Estimate - AAC	El Class 5						
Project Name:	KC Class A Biosolids Tech Evaluation			Date:	1/2	/2020		
Location:	South Plant	Steve Krugel and Trung Le Revision 01						
Description:	Description: TAD System at South Plant Version:							
Item No.	Item Description	Quantity	Units	Unit Cost		m Cost		
1	MAD to TAD Digester Upgrades	Digester Upgrades 1 LS 139200		13920000	\$	13,920,000		
			18360000	\$	18,360,000			
3					\$	-		
	\$	9,845,400						
		Su	btotal (Construction Costs	\$	42,125,400		
	Allowance	e for Indeterm	ninates (Design Allowance)	\$	8,425,080		
				Street Use Permit	\$	-		
	ESTIMATED P	ROBABLE COS	T OF CC	ONSTRUCTION BID	\$	50,550,480		
	DIRECT: SUBTOTAL ADDITIONA	L CONSTRUCT	ION CO	STS				
		Ű		truction Contracts	\$	- 5,055,048		
	Construction Change Order Allowance							
	Material Pricing Uncertainty Allowance							
Subtotal Primary Construction Amount						55,605,528		
Construction Sales Tax Owner Furnished Equipment						5,616,158		
	\$	-						
				ency Construction	\$	-		
				on to Construction	\$	61,221,686		
	DIRECT: SUBTOTAL OTHER							
		KC/W		ct Implementation	\$	-		
				Misc. Capital Costs	\$	111,211		
		-		STRUCTION COSTS	\$	61,333,000		
	INDIRECT: NON-CONST		-					
		Design ar		ruction Consulting		18,683,252		
				Consulting Services	\$	-		
		Permittin	g & Oth	er Agency Support	\$	556,055		
				Right-of-Way	\$	-		
				ervice & Materials	\$	444,844		
				Non-WTD Support	\$	472,647		
				WTD Staff Labor	\$	6,557,411		
		Subtoti		Construction Costs	\$	26,714,209		
			P	roject Contingency	\$ \$	26,414,132		
		INDIDECT NO		Initiatives	\$ \$	1,024,101		
	TOTAL			STRUCTION COSTS		54,152,443		
		TC	DTAL F	PROJECT COST	\$.	115,485,340		

	Estimate - AACEI Clas	s 5			
Project Name:	KC Class A Biosolids Tech Evaluation			Date:	1/2/2020
ocation:	South Plant			Estimator:	Steve Krugel and Trung Le
Description:	TAD System at South Plant			Version:	Revision 01
Item No.	Item Description	Unit Cost	Item Cost		
1	MAD to TAD Digester Upgrades	1.0	LS	\$ 13,920,000	\$ 13,920,000
2	Floating Cover to Fixed Cover Upgrade	4.0	EA	\$ 1,000,000	\$ 4,000,000
3	Heat Exchanger Upgrades	4.0	EA	\$ 300,000	\$ 1,200,000
4	Boiler upsize	2.0	EA	\$ 1,000,000	\$ 2,000,000
5	Digester Cleaning, Repairs, and General Upgrades, and New Mixing (4.0	EA	\$ 1,680,000	\$ 6,720,000
6	TAD Batch Tanks	1.0	LS	\$ 18,360,000	\$ 18,360,000
7	Batch tanks	1.5	\$/MG	\$ 12,000,000	\$ 18,360,000
8					\$ -
	Ite	m Subtotal Co	nstructio	on Costs (Year 2020)	\$ 32,280,000
	DIRECT: CONSTRUCTION COST	MARK-UPS			
	Gene	ral Conditions	10%	1.1	\$ 3,228,000
	Mobilization/D	emobilization	10%	1.1	\$ 3,228,000
	Overhead &	& Profit (OHP)	8%	1.08	\$ 2,582,400
		Insurance	1.5%	1.015	\$ 484,200
		Bonding	1.0%	1.01	\$ 322,800
	Escalation Multiplier	from ENR-CCI	0%	1.0000	\$ -
	Iter	m Subtotal Co	nstructio	on Costs (Year 2020)	\$ 42,125,400
	Di	rect: Subto	tal Co	nstruction Costs	

Base Year	Estimate Year
2019	2020

	Estima	te - AACEI Class 5						
Project Name:	KC Class A Biosolids Tech Evaluation			Date:	1,	/2/2020		
Location:	South Treatment Plant			Estimator:	Steve Krug	gel and Trung Le		
Description:	THP-MAD System at South Plant			Version:	Revision 01			
Item No.	Item Description	Quantity	Units	Unit Cost	lt	em Cost		
1	THP-MAD Digester Upgrades	1	LS	10720000	\$	10,720,000		
2	Solids Screening and Pre-dewatering		LS	84000000	\$	84,000,000		
3	Thermal Hydrolysis (CAMBI)	1	LS	53200000	\$	53,200,000		
4	Steam Boilers	1	LS	7910000	\$	7,910,000		
5	Cooling Towers	1	LS	4690000	\$	4,690,000		
6					\$	-		
		C	onstruct	ion Cost Markup	\$	48,958,600		
		Su	btotal C	onstruction Costs	\$	209,478,600		
		Allowance for Indeterm	ninates (Design Allowance)	\$	31,421,790		
				Street Use Permit	\$	-		
	ESTI	MATED PROBABLE COS	T OF CO	NSTRUCTION BID	\$	240,900,390		
	DIRECT: SUBTOTAL AD	DITIONAL CONSTRUCT	ION COS	STS				
		Mitigati	on Cons	truction Contracts	\$	-		
		Construction	n Chang	e Order Allowance	\$	24,090,039		
	Material Pricing Uncertainty Allowance							
	Subtotal Primary Construction Amount							
			Con	struction Sales Tax	\$	26,764,033		
		Ov	vner Fur	nished Equipment	\$	-		
		Ou	tside Ag	ency Construction	\$	-		
		Subtotal KC Cor	ntributio	n to Construction	\$	291,754,462		
	DIRECT: SUBTOT	AL OTHER CAPITAL CHA	RGES					
		KC/W	TD Dire	t Implementation	\$	-		
			I	Misc. Capital Costs	\$	529,981		
		TOTAL DIREC	CT CONS	TRUCTION COSTS	\$	292,284,000		
	INDIRECT: NO	N-CONSTRUCTION COS	TS					
		Design ar	d Const	ruction Consulting	\$	71,072,436		
			Other C	onsulting Services	\$	-		
		Permittin	g & Oth	er Agency Support	\$	2,649,904		
				Right-of-Way	\$	-		
			Misc. S	ervice & Materials	\$	2,119,923		
				Non-WTD Support	\$	2,252,419		
				WTD Staff Labor	\$	26,324,583		
		Subtot	al Non-C	onstruction Costs	\$	104,419,266		
			Pr	oject Contingency	\$	119,011,113		
				Initiatives	\$	4,731,621		
		TOTAL INDIRECT NO	N-CONS	TRUCTION COSTS	\$	228,162,000		
		Т	OTAL P	PROJECT COST	\$	520,446,443		

	Estimate - AACEI Class 5							
Project Name:	: KC Class A Biosolids Tech Evaluation Date:						1/2/2020	
ocation:	South Treatment Plant			Estir	nator:	Steve Krugel and Trung Le		
Description:	THP-MAD System at South Plant			Version:			Revision 01	
Item No.	Item Description	Quantity	Units		Unit Cost		Item Cost	
1	THP-MAD Digester Upgrades	1	LS	\$	10,720,000.00	\$	10,720,000	
2	Floating Cover to Fixed Cover Upgrade	4	EA	\$	1,000,000.00	\$	4,000,000	
3	Digester Cleaning, Repairs, and General Upgrades, and New Mixing (Draft Tube)	4	EA	\$	1,680,000.00	\$	6,720,000	
	Solids Screening and Pre-dewatering	1	LS	\$	84,000,000.00	\$	84,000,000	
5	Thermal Hydrolysis (CAMBI)	1	LS	\$	53,200,000.00	\$	53,200,000	
6	Steam Boilers	1	LS	\$	7,910,000.00	\$	7,910,000	
7	Cooling Towers	1	LS	\$	4,690,000.00	\$	4,690,000	
	Ite	m Subtotal Co	nstruct	tion C	osts (Year 2020)	\$	160,520,000	
	DIRECT: CONSTRUCTION COST MARK-	UPS						
	Gene	ral Conditions	10%		1.1	\$	16,052,000	
	Mobilization/D	emobilization	10%		1.1	\$	16,052,000	
	Overhead 8	& Profit (OHP)	8%		1.08	\$	12,841,600	
		Insurance	1.5%		1.015	\$	2,407,800	
		Bonding	1.0%		1.01	\$	1,605,200	
	Escalation Multiplier	from ENR-CCI	0%		1.0000	\$	-	
	Ite	m Subtotal Co	nstruct	tion C	osts (Year 2020)	\$	209,478,600	
	Di	irect: Subto	tal Co	onsti	ruction Costs	\$	209,479,000	

	Estimate - AACE	El Class 5					
Project Name:	KC Class A Biosolids Tech Evaluation			Date	:	12/30/2019	
Location:	King County - South End, Site To be Determined			Estin	nator:		Trung Le
Description:	ASP Composting Facility Version:						Revision 01
•	DIRECT: SUBTOTAL CONS	TRUCTION CO	OSTS				
Item No.	Item Description	1	Units		Jnit Cost		Item Cost
	Primary Composting	44,018		\$	157	\$	6,905,580
	Secondary Composting	69,728		\$	125	\$	8,747,068
	Process/Maintenance Buildings	67,750		\$	75	\$	5,081,231
	Office/Administration Building	7,500		\$	150	\$	1,125,000
	Admin Parking, Roads, Truck Access, Maintenance Yard,	, í					, ,
5	Curing and Storage, Screening	178,153	SF	\$	8	\$	1,425,221
	Dry Wood Storage	26,999		\$	25	\$	674,963
7	Ponds and Collection System	111,409	SF	\$	20	\$	2,228,184
8	Equipment Purchases (ECS)	1	LS	\$	1,955,000	\$	1,955,000
	Install Equipment Purchases (ECS)		LS	\$	1,225,000	\$	1,225,000
	Site Preparation / Demolition	629,055		\$	1	\$	933,091
	Site Mass Grading (whole site using avg. of 2.5' of cut to fill)		1	1			,
11		58,246	CY	\$	5	\$	262,106
12	Water / Sewer / Electrical Services to Site	1	LS	\$	250,000	\$	312,500
13	Site Perimeter - Chain Link Fencing	4,496	LF	\$	30	\$	133,995
14	Site Perimeter - New Landscape	170,023	SF	\$	8	\$	1,428,194
		C	onstruc	tion C	ost Markup	\$	9,893,326
	\$	42,330,460					
	Allowance	e for Indeterm	inates	(Desig	n Allowance)	\$	11,288,865
	\$	-					
	\$	53,619,325					
	DIRECT: SUBTOTAL ADDITIONAL	CONSTRUCT	ION CO	STS			
		Mitigati	on Con	struct	ion Contracts	\$	-
					er Allowance		5,644,432
		Material Prici					-
		Subtotal Prim					59,263,757
			Cor	struct	ion Sales Tax	\$	5,985,639
		Ow	vner Fu	rnishe	d Equipment	\$	2,825,000
		Ou	tside A	gency	Construction	\$	-
	Su	btotal KC Con	ntributi	on to	Construction	\$	68,074,396
	DIRECT: SUBTOTAL OTHER	CAPITAL CHA	RGES				
		KC/W	TD Dire	ect Imp	lementation	\$	-
				Misc.	Capital Costs	\$	124,178
		TOTAL DIREC	T CON	STRUC	TION COSTS	\$	68,199,000
	INDIRECT: NON-CONSTI	RUCTION COS	TS				
		Design an	d Cons	tructio	on Consulting	\$	14,228,182
			Other	Consu	Iting Services	\$	-
		Permittin	g & Otł	ner Ag	ency Support	\$	310,444
					Right-of-Way		-
			Misc. S	Service	e & Materials	\$	1,117,598
				Non-	WTD Support	\$	527,754
				WT	D Staff Labor	\$	6,941,389
		Subtote	al Non-	Const	ruction Costs	\$	23,125,367
			Р	roject	Contingency	\$	27,482,780
					Initiatives	\$	1,099,310
	ΤΟΤΑΙ	INDIRECT NOI	N-CON	STRIIC	TION COSTS	\$	51,707,457
		01,101,101					

	Estimate - AACEI Clas	s 5					
Project Name:	KC Class A Biosolids Tech Evaluation	e:	12/30/2019				
ocation:	King County - South End, Site To be Determined				imator:		Trung Le
Description:	ASP Composting Facility			Ver	sion:		Revision 01
	CONSTRUCTION COST	S					
Item No.	Item Description	Quantity	Units		Unit Cost		Item Cost
1	Primary Composting	44,018	SF	\$	156.88	\$	6,905,580
2	Primary Compost Process Area	1	LS	\$	-	\$	
3	Secondary Composting	69,728	SF	\$	125.45	\$	8,747,068
4	Secondary ASP Area	1	LS	\$	-	\$	
5	Process/Maintenance Buildings	67,750	SF	\$	75.00	\$	5,081,23
6	Pre-process & Tip Building	44,821	SF	\$	75.00	\$	3,361,59
7	Maintenance Building	5,000	SF	\$	75.00	\$	375,000
8	Bagging Building	17,929	SF	\$	75.00	\$	1,344,63
9	Office/Administration Building	7,500	SF	\$	150.00	\$	1,125,000
	Admin Parking, Roads, Truck Access, Maintenance Yard, Curing and			\$	8.00		
10	Storage, Screening	178,153	SF			\$	1,425,221
11	Admin Parking	2,500	SF	\$	8.00	\$	20,000
12	Roads	59,112	SF	\$	8.00	\$	472,890
13	Truck Access	26,893	SF	\$	8.00	\$	215,142
14	Maintenance Yard	8,964		\$	8.00	\$	71,714
15	Screening Area	13,446	SF	\$	8.00	\$	107,57
16	Curing and Storage Area	67,237	SF	\$	8.00	\$	537,898
	Dry Wood Storage	26,999	SF	\$	25.00	\$	674,963
18		111,409		\$	20.00	Ś	2,228,184
19	Contact Water Pond and Collection System	36,409		\$	15.00	\$	546,138
20	Storm water Pond	75,000		\$	5.00	\$	375,000
	Equipment Purchases (ECS)		LS		1,955,000.00	Ś	1,955,000
22	Wood Grinder (mid-large Horizontal)	1		\$	500,000.00	\$	500,000
23	Mixer System (ECS/LuckNow 2295)	2		\$	260,000.00	\$	520.000
24	Screen (MultiStar L3 Type)		EA	\$	550,000.00	\$	550,000
25	Bagging Equipment (RotoChopper Go-Bagger 250)	2		\$	60,000.00	\$	120,000
26	Radial Stacking Conveyors	3		\$	195,000.00	ç	585,000
	Install Equipment Purchases (ECS)	-	LS		1,225,000.00	\$	1,225,000
28	Install Mixer System (ECS/LuckNow 2295)	2		\$	520,000.00	\$	1.040.000
28	Install Bagging Equipment (RotoChopper Go-Bagger 250)	-	EA	\$	120,000.00	\$	120,000
30	Install Radial Stacking Conveyors	-	EA	\$	195,000.00	\$	585,000
	Site Preparation / Demolition	629,055		\$	193,000.00	ş Ş	933,091
31		1,315,759		\$	0.50	\$	657,879
32	Demo Existing Building (1/4 of site size) Demo Existing Hard Surfaces (1/2 of site size)	314,528		\$ \$	0.50	\$ \$	235.896
33	Demo Existing Hard Surfaces (1/2 of site size) Demo Existing Landscape/Trees (1/4 of site size)	157,264		\$ \$	0.75	\$ \$	39,316
÷:	Site Mass Grading (whole site using avg. of 2.5' of cut to fill)	58,246		\$ \$	4.50	ې \$	262,100
	Water / Sewer / Electrical Services to Site		LS	\$	250,000.00	ş	312,500
36	Site Perimeter - Chain Link Fencing	4,496	-	\$ \$	250,000.00	\$ \$	312,500
-	Site Perimeter - Chain Link Fencing Site Perimeter - New Landscape	4,496		Ş Ş	29.80	ş Ş	1,428,194
50		.,	-		00	, \$	
	DIRECT: CONSTRUCTION COST	Subtotal Const	uction	COS	is (<i>tear 2020</i>)	Ş	32,437,134
			1000	-		ć	2 242 712 2
		eral Conditions		<u> </u>	1.1	\$	3,243,713.3
		Demobilization		<u> </u>	1.1	\$	3,243,713.3
	Overhead	& Profit (OHP)		<u> </u>	1.08	\$	2,594,970.7
		Insurance		<u> </u>	1.015	\$	486,557.0
		Bonding		<u> </u>	1.01	\$	324,371.3
	Escalation Multiplie			<u> </u>	1.0000	\$	-
		Subtotal Const			, ,	\$	42,330,46
	Dire	ct: Subtota	Conc	tru	ction Costs	Ś	42.330.000

		Estimate - AACEI	Class 5					
Project Name:	КС	KC Class A Biosolids Tech Evaluation Date:						
Location:	Ki	ng County - South End, Site To be Determined			Estimator:		Trung Le	
Description:	AS	ASP Composting Facility Version:					Revision 01	
		CONSTRUCTION	COSTS					
Item No.		Item Description	Quantity	Units	Unit Cost		Item Cost	
	1 Ec	uipment Purchases (ECS)	1	LS	\$ 2,825,040	\$	2,825,040	
	2	Large Front End Loader (Cat 980, Type)	4	EA	\$ 550,000	\$	2,200,000	
	3	Small Front End Loader (Cat 950, Type)	1	EA	\$ 300,000	\$	300,000	
	4	Compost Turner (X67 Type)	0	EA	\$ 600,000	\$	-	
	5	Forklift	1	EA	\$ 50,000	\$	50,000	
	6	Repair Shop Tools	1	LS	\$ 200,000	\$	200,000	
	7	Sport Utility Vehicle	1	EA	\$ 36,960	\$	36,960	
	8	Pickup Truck	1	EA	\$ 38,080	\$	38,080	
	9							
			Item Subt	otal Constru	uction Costs (Year)	\$	2,825,040	
		DIRECT: CONSTRUCTION C	OST MARK-UPS	5				
		Gene	eral Conditions	10%	1.1		included	
		Mobilization/I	Demobilization	10%	1.1		included	
		Overhead	& Profit (OHP)	10%	1.1		included	
			Insurance	1.5%	1.015		included	
			Bonding	1.0%	1.01		included	
		Escalation Multiplier	from ENR-CCI	0%	1.0000	\$	-	
			Item Subt	otal Constru	uction Costs (Year)	\$	2,825,040	
			Direct: Sub	total Con	struction Costs	\$	2,825,000	

	Estimate - AAC	El Class 5				
Project Name:	KC Class A Biosolids Tech Evaluation			Date:		12/30/2019
ocation:	King County - South End, Site To be Determined			Estimator:	Trung Le	
Description:	Soil Blending Facility (Adjacent to Composting)			Version:		Revision 01
	DIRECT: SUBTOTAL CON	STRUCTION C	OSTS			
Item No.	Item Description	Quantity	Units	Unit Cost		Item Cost
	Process Building (Prefab Building)	22.400		157	\$	3,516,800
	Feedstock Storage (Tensile Membrane)	24,600	-	20	\$	492,000
	Finished Product Storage (Tensile Membrane)	15.000		20	\$	300,000
	Misc Buildings	15,000	SF	75	\$	1,125,000
5	Office/Administration Building	5,000	SF	75	\$	375,000
	Admin Parking, Roads, Truck Access, Maintenance Yard,					,
6	Screening, Finished Product Storage (Uncovered)	150,000	SF	8	\$	1,200,000
7	Ponds and Collection System	60,000	SF	22	\$	1,300,000
	Equipment Purchases	1	LS	2,200,000	\$	2,200,000
9	Install Equipment Purchases	1	LS	1,510,000	\$	1,510,000
10	Site Preparation / Demolition	438,000	SF	2	\$	1,012,875
11	Site Mass Grading (whole site using avg. of 2.5' of cut to fill)	40,556	CY	5	\$	182,500
12	Water / Sewer / Electrical Services to Site		LS	250,000	\$	250,000
13	Site Perimeter - Chain Link Fencing	4,000	LF	30	\$	119,200
14	Site Perimeter - New Landscape	95,000	SF	8	\$	798,000
			Construc	tion Cost Markup	\$	4,386,319
			Subtotal	Construction Costs	\$	18,767,694
	\$	5,360,674				
				Street Use Permit	\$	
	ESTIMATED	PROBABLE C	OST OF CO	ONSTRUCTION BID	\$	24,128,368
	DIRECT: SUBTOTAL ADDITIONA	AL CONSTRUC	TION COS	TS		
		Mitig	ation Con	struction Contracts	\$	
		Construct	ion Chang	ge Order Allowance	\$	2,680,337
		Material P	ricing Unc	ertainty Allowance	\$	
		Subtotal Pr	,	nstruction Amount	\$	26,808,705
				struction Sales Tax	\$	2,707,679
				rnished Equipment	\$	2,675,000
				gency Construction	\$	
		Subtotal KC (Contributi	on to Construction	\$	32,191,384
	DIRECT: SUBTOTAL OTHER					
		KC/		ect Implementation		
				Misc. Capital Costs	\$	58,967
				STRUCTION COSTS	\$	32,250,000
	INDIRECT: NON-CONST					
		Design		truction Consulting	\$	7,718,967
				Consulting Services	\$	
		Permit	ting & Oth	ner Agency Support	\$	147,419
				Right-of-Way	\$	
			Misc. S	Service & Materials	\$	530,70
				Non-WTD Support	\$	250,611
				WTD Staff Labor	\$	3,602,770
		Subt		Construction Costs	\$	12,250,48
			P	roject Contingency	\$	13,431,302
				Initiatives	\$	530,272
	τοτ,			STRUCTION COSTS	\$	26,212,053
			TOTAL	PROJECT COST	\$	58,462,405

Base Year	Estimate Year
2020	2020

	Estimate - AACEI Class	5			-	12/22/2212
Project Name:	KC Class A Biosolids Tech Evaluation			Date: Estimator:	_	12/30/2019
ocation:	King County - South End, Site To be Determined					Trung Le
escription:	Soil Blending Facility (Adjacent to Composting)	Version:		Revision 01		
	CONSTRUCTION COSTS		.		-	
Item No.	Item Description	Quantity	Units	Unit Cost		Item Cost
	Process Building (Prefab Building)	22,400		\$ 15		3,516,800
2	Primary Mixing Area	20,000		\$ 15		3,140,000
3	Feedstock Day Storage	2,400	-	\$ 15		376,800
	Feedstock Storage (Tensile Membrane)	24,600		\$ 2		492,000
5	Feedstock Storage (Sawdust)	15,000		\$ 2		300,000
6	Feedstock Storage (Biosolids and Fine Sand)	9,600		\$ 2		192,000
7	Finished Product Storage (Tensile Membrane)	15,000		\$ 2		300,000
	Misc Buildings	15,000		\$7		1,125,000
9	Maintenance Building	5,000		\$ 7		375,000
10	Bagging Building	10,000	-	\$ 7		750,000
11	Office/Administration Building	5,000	SF	\$ 7	5\$	375,000
	Admin Parking, Roads, Truck Access, Maintenance Yard, Screening,					
12	Finished Product Storage (Uncovered)	150,000			3\$	1,200,000
13	Admin Parking	2,500	SF	\$	3\$	20,000
14	Roads	50,000			3\$	400,000
15	Truck Access	25,000	SF	\$	3\$	200,000
16	Maintenance Yard	5,000	SF		3\$	40,000
17	Screening Area	7,500	SF	\$	3\$	60,000
18	Finished Product Storage (Uncovered)	60,000	SF		3\$	480,000
19	Ponds and Collection System	60,000	SF	\$ 2	2\$	1,300,000
20	Contact Water Pond and Collection System	20,000	SF	\$ 2	5\$	500,000
21	Stormwater Pond	40,000	SF	\$ 2) \$	800,000
22	Equipment Purchases	1	LS	\$ 2,200,00) \$	2,200,000
23	Wood Grinder (mid-large Horizontal)	1	EA	\$ 500,00) \$	500,000
24	Mixer System (Horizontal Rotomix 1220-20, Stationary)	2	EA	\$ 350,00) \$	700,000
25	Screen (MultiStar L3 Type)	1	EA	\$ 550,00) \$	550,000
26	Bagging Equipment (RotoChopper Go-Bagger 250)	1	EA	\$ 60,00) \$	60,000
27	Radial Stacking Conveyors	2	EA	\$ 195,00) \$	390,000
28	Install Equipment Purchases	1	LS	\$ 1,510,00) \$	1,510,000
29	Install Mixer System (Rotomix 1220-20, Stationary)	2	EA	\$ 500,00) \$	1,000,000
30	Install Bagging Equipment (RotoChopper Go-Bagger 250)	1	EA	\$ 120,00) \$	120,000
31	Install Radial Stacking Conveyors	2	EA	\$ 195,00) \$	390,000
32	Site Preparation / Demolition	438,000	SF	\$ 2.3	L \$	1,012,875
33	Demo Existing Building (1/4 of site size)	1,642,500	SF	\$ 0.5) \$	821,250
34	Demo Existing Hard Surfaces (1/2 of site size)	219,000		\$ 0.7	5 \$	164,250
35	Demo Existing Landscape/Trees (1/4 of site size)	109,500	SF	\$ 0.2	5 \$	27,375
	Site Mass Grading (whole site using avg. of 2.5' of cut to fill)	40.556		\$ 4.		182.500
	Water / Sewer / Electrical Services to Site	1	LS	\$ 250,00) \$	250,000
38	Site Perimeter - Chain Link Fencing			\$ 3		119.200
	Site Perimeter - New Landscape	95.000			3 \$	798,000
		ubtotal Const	ruction	Costs (Year 202		14,381,375
	DIRECT: CONSTRUCTION COST N				/ / *	1,331,373
		ral Conditions	10%	1	1\$	1,438,137.50
	Mobilization/D		10%	1	-	1,438,137.50
		& Profit (OHP)	8%	1.0		1,150,510.00
	Overhead	Insurance		1.0		215,720.63
		Bonding		1.0.		
	Escalation Multiplier	0	1.0%	1.000		143,813.75
						-
				Costs (Year 202		18,767,694
	Direc	ct: Subtotal	Cons	truction Cost	s Ś	18,768,000

	Estimate - AACEI Cla	iss 5				
Project Name:	KC Class A Biosolids Tech Evaluation	Date:		12/30/2019		
Location:	King County - South End, Site To be Determined		Estimator:		Trung Le	
Description:	Soil Blending Facility (Adjacent to Composting	Version:		Revision 01		
	CONSTRUCTION CO			1		
Item No.	Item Description	Quantity	Units	Unit Cost	Item Cost	
1	Equipment Purchases (ECS)	1	LS	LS \$ 2,675,040		2,675,040
2	Large Front End Loader (Cat 980, Type)	3	EA	\$ 550,000	\$	1,650,000
3	Small Front End Loader (Cat 950, Type)	1	EA	\$ 300,000	\$	300,000
4	Compost Turner (X67 Type)	0	EA	\$ 600,000	\$	-
5	Forklift	1	EA	\$ 50,000	\$	50,000
6	Repair Shop Tools	1	LS	\$ 200,000	\$	200,000
7	Sport Utility Vehicle	1	EA	\$ 36,960	\$	36,960
8	Pickup Truck	1	EA	\$ 38,080	\$	38,080
g	Articulating Hauler Truck	1	EA	\$ 400,000	\$	400,000
10						
		Item Subt	otal Constr	uction Costs (Year)	\$	2,675,040
	DIRECT: CONSTRUCTION COS	T MARK-UPS	6			
	Genera	l Conditions	10%	1.1		included
	Mobilization/Der	nobilization	10%	1.1		included
	Overhead &	Profit (OHP)	10%	1.1		included
		Insurance	1.5%	1.015		included
		Bonding	1.0%	1.01		included
	Escalation Multiplier fr	om ENR-CCI	0%	1.0000	\$	-
		Item Subt	otal Constr	uction Costs (Year)	\$	2,675,040
	D	irect: Sub	total Con	struction Costs	\$	2,675,000

Base Year	Estimate Year
2020	2020

	Estimate - AA	CEI Class 5					
Project Name:	KC Class A Biosolids Tech Evaluation			Dat	e:		12/30/2019
Location:	King County - South End, Site To be Determined			Esti	mator:		Trung Le
Description:					sion:		Revision 01
	DIRECT: SUBTOTAL CON	ISTRUCTION CO	STS				
Item No.							Item Cost
	1 Office/Administration Building	5000	-	\$	150	\$	750,000
	2 Admin Parking, Roads, Truck Access	50000	-	\$	8	\$	400,000
	3 Process/Maintenance Building	175000	-	\$	218	\$	38,155,000
	4 Equipment Purchases		LS	\$	94,828,600	\$	94,828,600
	5 Install Equipment Purchases		LS	\$	51,783,950	\$	51,783,950
	5 Site Preparation / Demolition	270000		\$	2	\$	624,375
	7 Water / Sewer / Natural Gas / Electrical Services to Site		LS	\$	1,000,000	\$	1,000,000
	8 Site Perimeter - Chain Link Fencing	2000		\$	30	\$	60,000
	9 Site Perimeter - New Landscape	2000	-	\$	10	\$	20,000
					Cost Markup	\$	57,102,687
					truction Costs	\$	244,724,612
	Allowan	ice for Indeterm	inates (0 1		61,181,153
Street Use Permit							-
ESTIMATED PROBABLE COST OF CONSTRUCTION BID						\$	305,905,765
	DIRECT: SUBTOTAL ADDITION						
Mitigation Construction Contracts							-
Construction Change Order Allowance							30,590,577
Material Pricing Uncertainty Allowance							-
Subtotal Primary Construction Amount							336,496,342
							33,986,131
Owner Furnished Equipment							-
Outside Agency Construction Subtotal KC Contribution to Construction						\$ \$	370,482,472
	DIRECT: SUBTOTAL OTHE			mu	construction	Ş	370,482,472
	DIRECT: SOBIOTAL OTHE			at lu	plementation	ć	
		KC/W			. Capital Costs		672,993
					CTION COSTS	_	371,155,000
	INDIRECT: NON-CONS			orku	CHON COSTS	Ş	371,133,000
	INDIRECT: NON-CONS			ruct	ion Consulting	ć	57,089,958
					ulting Services		57,069,956
							1,682,482
Permitting & Other Agency Support							1,002,402
Right-of-Way Misc. Service & Materials						6,056,934	
					-WTD Support		2.860.219
					TD Staff Labor		31,528,089
		Subtoto	al Non-O		truction Costs	\$	99,217,682
					t Contingency		141,111,944
					Initiatives		5,788,093
	ΤΟΤΑ	L INDIRECT NO	N-CONS	TRL		\$	246,117,719
				-	JECT COST	\$	617,273,184
		10		10	5207 0031	Ŷ	017,273,104

	Estimate - AACEI Class	<u> </u>					
Project Name:	KC Class A Biosolids Tech Evaluation			Dat	te:		12/30/2019
ocation:	King County - South End, Site To be Determined			Est	imator:		Trung Le
escription:	Thermal Drying Pyrolysis Off-site Facility			Ver	sion:		Revision 01
	CONSTRUCTION COSTS						
Item No.	Item Description	Quantity	Units		Unit Cost		Item Cost
1	Office/Administration Building	5,000	SF	\$	150	\$	750,00
2	Admin Parking, Roads, Truck Access	50,000	SF	\$	8	\$	400,00
3	Admin Parking	2,500	SF	\$	8	\$	20,00
4	Roads (Asphalt)	25,000	SF	\$	12	\$	300,00
5	Truck Access	10,000	SF	\$	8	\$	80,00
6	Process/Maintenance Building	175,000	SF	\$	218.03	\$	38,155,00
7	Pre-Fabricated Building - Process, Maintenance, Electrical, Mechanical	175,000	SF	\$	175	\$	30,625,00
8	Concrete Slab	161,200	SF	\$	25	\$	4,030,00
9	Additional Electrical	175,000	SF	\$	20	\$	3,500,00
10	Equipment Purchases	1	LS	\$	94,828,600	\$	94,828,60
11	DLT 1120 Belt Dryers	12	EA	\$	2,723,217	\$	32,678,60
12	BFT P-THREE Pyrolysis Unit	24	EA	\$	2,075,000	\$	49,800,00
13	Conveyence System, Sludge Pumps, etc	1	EA	\$	750,000	\$	750,00
14	Hot Water Boilers	2	EA	\$	500,000	\$	1,000,00
15	Storage Hoppers	5	EA	\$	500,000	\$	2,500,00
16	Odor Control	1	LS	\$	7,500,000	\$	7,500,00
17	Storage Containers	2	EA	\$	300,000	\$	600,00
18	Install Equipment Purchases	1	LS	\$	51,783,950	\$	51,783,95
19	Install DLT 1120 Belt Dryer	12	EA	\$	2,042,413	\$	24,508,95
20	Install BFT P-THREE Pyrolysis Unit	24	EA	\$	1,037,500	\$	24,900,00
21	Install Hot Water Boiler	2	EA	\$	250,000	\$	500,00
22	Install Conveyance System and Hoppers	5	EA	\$	375,000	\$	1,875,00
23	Site Preparation / Demolition	270,000	SF	\$	2.31	\$	624,37
24	Demo Existing Building	1,012,500	CF	\$	0.50	\$	506,25
25	Demo Existing Hard Surfaces	135,000	SF	\$	0.75	\$	101,250
26	Demo Existing Landscape/Trees	67,500	SF	\$	0.25	\$	16,87
27	Water / Sewer / Natural Gas / Electrical Services to Site	1	LS	\$	1,000,000	\$	1,000,00
28	Site Perimeter - Chain Link Fencing	2,000	LF	\$	30.00	\$	60,00
29	Site Perimeter - New Landscape	2,000	SF	\$	10.00	\$	20,000
	Item	Subtotal Const	ruction	Cos	ts (Year 2020)	\$	187,221,92
	DIRECT: CONSTRUCTION COST M	ARK-UPS					
	Gen	eral Conditions	10%		1.1	\$	18,722,192.5
	Mobilization/	Demobilization	10%		1.1	\$	18,722,192.5
		& Profit (OHP)			1.08		14,977,754.0
		Insurance			1.015		2,808,328.8
		Bonding		-	1.01	\$	1,872,219.2
	Escalation Multiplie			-	1.0000		1,072,213.2
	•	Subtotal Const		Cor		\$	244,324,61
		ct: Subtota			, ,	ء \$	244,325,000

Project Planning and Delivery Section

BASIS OF ESTIMATE

Project Name	King County Class A Biosolids Technology Evaluation
Project Number	151084
Date Prepared	01/24/2020
Requested by	Catherine Gowan, King County WTD
Prepared by	Trung Le, Brown and Caldwell
Estimate Classification	Class 5 AACE International
Estimate Purpose	Formulation Project
Estimate ID (Version)	01
Project Manager	Catherine Gowan
Project Control Engineer	
Cc or Distribution List	John Conway, Ashley Mihle

Note that the accuracy of the associated cost estimate is dependent upon the various underlying assumptions, inclusions, and exclusions described herein. Actual project costs may differ and can be significantly affected by factors such as changes in the external environment, the manner in which the project is executed and controlled, and other factors that may impact the estimate basis or otherwise affect the project. Estimate accuracy ranges are only assessments based upon the cost estimating methods and data employed in preparing the estimate and are not a guarantee of actual project costs.

BASIS OF ESTIMATE

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

1.0 Purpose

The purpose of this project was to conduct a Class A biosolids technology evaluation for King County (County). This project was developed to assist the County in preparing their response to King County Council Proviso 2019-0148.P3 Version 2. The proviso calls for the identification of Class A alternatives to the current Class B biosolids application in forest and farm environments. The County is interested in diversifying the biosolids products to increase resiliency. The evaluation built upon the Solids Processing Technology Evaluation (Task 450) that was performed as part of the King County Treatment Plant Flows and Loads Study. The previous evaluation identified and screened solids treatment technologies for each of the County's three regional treatment plants. Other earlier studies conducted for the County on Class A biosolids treatment alternatives were also used as background materials for the study.

The TM documents the following subtasks:

- Class A technology screening
- Overview descriptions of the short-listed technologies, including a more detailed description of the gasification/pyrolysis technology
- Development of biosolids treatment and disposal/reuse scenarios
- Conceptual modeling of each scenario to evaluate solids production, energy usage, and greenhouse gas (GHG) emissions.
- Development of conceptual capital and operating and maintenance (O&M) cost estimates
- Evaluation of the scenarios based on triple bottom line (TBL) criteria.

Class 5 probable cost of construction estimates for the different scenarios were developed and used for the economic analysis and TBL evaluation. The expected accuracy range was +100%/-50% as typical with Class 5 estimates.

2.0 **Project Scope Definition**

The construction estimates were based on the four scenarios below. These scenarios were developed from the short-listed technologies, and each scenario provides biosolids management for all biosolids produced by King County wastewater treatment plants. They are as follows:

- Scenario 1: Base-case Existing MAD with 100 percent Class B land application to western and eastern Washington
- Scenario 2: Enhanced Class A Existing mesophilic digestion at Brightwater with Class B biosolids hauled to an off-site Class A composting facility and local sales; Cambi at South Plant with Class A land application in western and eastern Washington (40 percent/60 percent); and TAD with batch tanks at West Point and off-site soil blending with local sales
- Scenario 3: Pyrolysis Existing mesophilic digestion at all three plants with dewatered cake hauled to off-site thermal drying and pyrolysis treatment. Biochar byproduct contracted to Bioforcetech under a public-private partnership.
- Scenario 4: Optimized Class A Existing mesophilic digestion at Brightwater with Class B biosolids hauled to an off-site Class A composting facility and local sales; TAD with batch tanks at

BASIS OF ESTIMATE

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

South Plant with Class A land application in western and eastern Washington (40 percent/60 percent); and TAD with batch tanks at West Point and off-site soil blending with local sales

The sizing for each of the scenarios was based on flows and loads that were projected to a 2050 design year. Raw influent flows and loadings for each of the three plants were provided by the County as part of flows and loads study to evaluate treatment plant capacity limitations. A plant-wide solids mass balance model calibrated during that study was used to calculate digester feed solids loading rates from the 2050 raw influent flows and loadings. **Table 1** presents a summary of the construction.

Scenarios	Facility	Construction
	West Point	2 New Meso Digester
S1	South Plant	1 New Meso Digester
	Brightwater	1 New Meso Digester
	West Point	TAD Conversion (heating upgrades, mixing, cleaning)
	Soil Blending	New Off-Site Facility (buildings, site prep, machinery, utilities, etc)
S2	South Plant	THP-MAD System (pre-dewatering, screens, steam boilers, etc)
	Brightwater	1 New Meso Digester
	Composting	New Off-Site Facility (buildings, site prep, machinery, utilities, etc)
	West Point	2 New Meso Digester
	South Plant	1 New Meso Digester
S 3	Brightwater	1 New Meso Digester
	Pyrolysis	New Off-Site Facility (buildings, site prep, thermal dryers, pyrolysis equipment, odor, utilities, etc)
	West Point	TAD Conversion (heating upgrades, mixing, cleaning)
	Soil Blending	New Off-site Facility (buildings, site prep, machinery, utilities, etc)
S4	South Plant	TAD Conversion (heating upgrades, mixing, cleaning)
	Brightwater	1 New Meso Digester
	Composting	New Off-site Facility (buildings, site prep, machinery, utilities, etc)

Table 1 – Summary	of Scenario	Construction
-------------------	-------------	--------------

Scenario 1

New mesophilic digesters will be required at each of the wastewater treatment plants as reflected in **Table 1**. The cost for these digesters were unit prices sourced from an average of other projects in the region. This estimate was inclusive and assumed similar sizing to existing digesters, materials, digestion mixing, floating/fixed covers, and other ancillary components.

BASIS OF ESTIMATE

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

West Point's conversion to a TAD system would require no additional digesters. However, the existing floating covers and mixing system would need to be upgraded. An additional two boilers would be installed to supply the heat required to maintain thermophilic digestion. A heat pump would be used to cool and recover the heat to preheating of the sludge. The cost estimates included minor repairs and cleaning of the digesters.

South Plant would utilize Cambi's thermal hydrolysis process. This system requires additional ancillary equipment that includes pre-dewatering, screening, blend tanks, and steam boilers. These systems along with the THP process would be housed in a new multi-floor building.

The soil blending facility was sized based on Tacoma's Tagro blended product that is comprised of 40:40:20 biosolids to sawdust to sand. The soil blending would occur in a prefabricated semi-closed building. Feedstocks and a portion of the blended product would be stored under a membrane canopy building. Other facilities include a bagging building. Maintenance and admin buildings would be shared with the adjacent composting facility. Major equipment includes batch auger mixers, trommel screen, front end loaders, hauling trucks, conveyors, a grinder, and bagging equipment.

Brightwater would require the additional construction of a fixed cover mesophilic digester.

The composting facility was modeled based on the aerated static pile system (Option 2) in the Compost Facility Basis of Estimation document (under King County Project 1132733). This system uses a perforated aeration pipe network floor for the active compost phase. The composting and curing process occurs under a roof. Feedstocks are also covered. Additional facilities include maintenance and admin buildings, and a bagging facility. Major equipment includes batch auger mixers, trommel screen, front end loaders, hauling trucks, conveyors, a grinder, and bagging equipment.

Scenario 3

Scenario 3 requires the same construction requirements as Scenario 1 but with the addition of an offsite thermal drying and pyrolysis facility. Major equipment includes thermal dryers, pyrolysis units, and odor control. The facility will be housed in an enclosed prefabricated metal facility. Construction costs were inclusive of utilities and other ancillary components.

Scenario 4

This scenario has the same construction requirements as Scenario 2 except for South Plant which would use TAD instead of THP-MAD. This would significantly reduce the construction requirement and only require the conversion of the MAD system to TAD. This includes replacing existing floating covers with fixed covers and upgrading the mixing system. An additional two boilers would be installed to supply the heat required to maintain thermophilic digestion. A heat pump would be used to cool and recover the heat to preheating of the sludge. The cost estimates included minor repairs and cleaning of the digesters.

3.0 Design Basis

The design basis of the scenarios was developed from KC Class A Biosolids Technology Evaluation Technical Memorandum. Additional information can be found in this technical memorandum.

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

4.0 Planning Basis

This project is a high-level alternative analysis of feasible Class A biosolids management programs. A more thorough alternatives analysis would need to be completed at a later date to develop further scope parameters, cost and etc.

5.0 Cost Basis

The cost estimate has been prepared in accordance with AACE International as a Class 5 estimation for projects with a maturity level of 0% to 2%. The cost estimate was intended for concept screening and uses costing methodologies such as capacity factored, parametric models, judgment, or analogy. The expected high side accuracy range is +30% to +100% and the low side accuracy is -20% to -50%. For this study, it is expected that the range of accuracy is within -50% to +100% of the estimate. Table 2 represents the total project capital cost for each of the scenarios and is inclusive of all KC WTD allowances.

Table 2 – Total Project Capital Cost

Parameters and Scenarios	Low Range (AACE: -20% to - 50%)	Total Project Capital Cost	High Range (AACE: +30% to +100%)
Accuracy Range	-50%	-	+100%
Scenario 1: Base-case	\$132,000,000	\$264,000,000	\$528,00,000
Scenario 2: Enhanced Class A	\$433,000,000	\$867,000,000	\$1,734,000,000
Scenario 3: Pyrolysis	\$441,000,000	\$881,000,000	\$1,762,000,000
Scenario 4: Optimized Class A	\$231,000,000	\$462,000,000	\$924,00,000

Methods and sources used to determine construction costs are listed below:

- All construction, direct and indirect costs were estimated utilizing local unit price analysis. The unit price analyses were derived from other local projects or national projects which were adapted using ENR-CCI factors
- All costs are estimated in 2020 dollars unless stated.
- Vendor quotes were provided for thermal drying and pyrolysis equipment in scenario 3
- Costs for THP were derived from 100% design documents and estimations.

6.0 Allowances

The Allowance for Indeterminates (AFI) was applied to the construction cost and varied depending on the sourcing of the cost estimation. The AFI is an allowance that accounts for the cost of known but undefined requirements necessary for a complete and workable project. **Table 3** provides a summary of the AFI selected for each of the cost estimates.

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

Table 3 – Summary of Data Sourcing and Allowances for Indeterminates

Scenarios	Facility	Modification	Data Source	AFI	
	West Point	2 New Meso Digester			
S1	South Plant	1 New Meso Digester	Compiled Project Data (Various Years)	25%	
	Brightwater	1 New Meso Digester	10010)		
	West Point	TAD Conversion (heating upgrades, mixing, cleaning)	100% Design (2018)	20%	
	Soil Blending	New Off-site Facility (buildings, site prep, machinery, utilities, etc)	Engineer's Estimate/ Project Data	25%	
S2	South Plant	THP-MAD System (predewatering, screens, steam boilers, etC)	100% Design (2019 West Coast)	15%	
	Brightwater	1 New Meso Digester	Compiled Project Data (Various Years)	25%	
	New Off-site Facility (buildings, site prep, machinery, utilities, etc)	Scaled from King County Project (1132733) BOE Compost Facility, Engineer's Estimate/ Project Data	25%		
V	West Point	2 New Meso Digester			
	South Plant	1 New Meso Digester	Compiled Project Data (Various Years)	25%	
S 3	Brightwater	1 New Meso Digester	Touroj		
	Pyrolysis	New Off-site Facility (buildings, site prep, machinery, utilities, etc)	Vendor Quotes	25%	
	West Point	TAD Conversion (heating upgrades, mixing, cleaning)	100% Design (2018)	20%	
	Soil Blending	New Off-site Facility (buildings, site prep, machinery, utilities, etc)	Engineer's Estimate/ Project Data	25%	
S4	South Plant	TAD Conversion (heating upgrades, mixing, cleaning)	100% Design (2018)	20%	
	Brightwater	1 New Meso Digester	Compiled Project Data (Various Years)	25%	
	Composting	New Off-site Facility (buildings, site prep, machinery, utilities, etc)	Scaled from King County Project (1132733) BOE Compost Facility, Engineer's Estimate/ Project Data	25%	

7.0 Assumptions

General assumptions are documented below if not already explicitly stated elsewhere in the estimate basis. Some assumptions were carried over from the BOE 20% Composting Facility estimate previously completed under Project 1132733.

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

- Off-site facilities (blending, composting, and pyrolysis) are assumed to be located within King County but separate from any existing King County WTD facilities. Impacts to project cost may occur based on the selection of locations.
- Assumptions related to potential South King County site preparation will require:
 - Existing Building Demolition assumed building covers ¹/₄ of the site and is 15' tall.
 - One half of the existing site is covered by asphalt/concrete requiring removal of same.
 - o It is assumed that 1/4 of the site will be covered by vegetation/trees that will require removal.
 - Earthwork the estimate assumes that the site will require rough grading. An assumption
 of a need to cut and fill the site to obtain required grades would be an average of 2.5 feet
 in depth across the whole site.
- The WTD Prism cost model default values were used to included costs for permitting, easements, and WTD costs.
- It is assumed that the project generally aligns with WTD's Treatment PRISM cost model.
- It is assumed that all work will be performed utilizing safe work methods at all times.
- It is assumed that work will be sequenced to minimize process, service, and community interruptions.
- Any additional work discovered during project excavation would need to be either a supplemental approval or be approved as an additional project.
- It is assumed that any community impact costs are minimal. Any substantial impacts and their subsequent costs are beyond the scope of this project.
- It is assumed that this project will be engineered to meet any normal area seismic requirements.
- It is assumed that the current site selection is only conceptual, at this time and will be further analyzed under Alternative Analysis.
- Contractor project mark-ups have been included as add-ons to the construction estimates and were left as default values.
- This estimate does not include any allowances for ESJ. It is assumed that ESJ opportunities will be explored at project initiation and that any associated costs will be budgeted for at that time.

8.0 Exclusions

All potential items of cost which might be associated with the project but for which no costs have been included are listed below:

- No land acquisition/purchase costs were included.
- No hazardous waste removal costs such as asbestos, lead paint, or contaminated soils were included.

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

- Site specific concerns or difficulties unique to a specific site.
- Geotechnical requirements or special foundations.
- Additional work/costs related with neighborhood and homeowners association requirements.
- No estimated costs are included for any potential delays due to interferences.
- No estimated costs were included for sequencing of offline digesters.
- No costs are included for any additional scope beyond that as detailed in the current scope of work.
- No additional estimating allowances for WTD indirect costs have been included in the Total Project Cost estimate since a Routine degree of complexity rating was applied for Construction Management, Permitting & Licenses, Operations Support, Project Management, and Project Controls.
- No allowances for tariffs have been included.

9.0 Exceptions

Not Applicable.

10.0 Risks (Threats and Opportunities)

The magnitude of this evaluation has risks in costing. Siting of off-site facilities can potentially result in unknow costs for preparation, remediation, and permitting requirements.

Pyrolysis represents a new technology that has financial risks due to the uncertainty of operation and market acceptance.

11.0 Contingency

A contingency is a cost element intended to cover uncertainties and unforeseeable elements of cost within the defined project scope. Contingency covers inadequacies in project scope definition, estimating methods, and estimating data.

Contingency specifically excludes changes in project scope, and unforeseen major events such as earthquakes, prolonged labor strikes, etc.

A 30% Project Contingency was added to the base estimate of Total Project Costs (direct and indirect) in accordance with the King County WTD project delivery process. The total project cost at a 50% confidence level is typically used for funding and baselining of a project at this stage of engineering and project development.

12.0 Management Reserve

Management reserves are an owner's contingency and have not been applied per the default County Prism model.

Project Name	Project Title		
Project Number:	151084.452	Date:	01/24/2020

13.0 Reconciliation

Not Applicable.

14.0 Benchmarking

Not Applicable.

16.0 Attachments

Not Applicable.

KC Class A Biosolids Technology Evaluation

Attachment D: Triple Bottom Line

TBL Evaluation

King County Class A Biosolids Technology Evaluation Brown and Caldwell 1/28/2020

Scenario 1 - Base Case Scenario 2 - Enhanced Class A Scenario 3 - Pyrolysis Scenario 4 - Optimized Class A

	Class A	Biosolids	Technolo	gy Evaluati	on			
ID	Evaluation Criteria	Weighting Factor	Possible Score	Scenario 1- Base Case	Scenario 2 - Enhanced Class A	Scenario 3 - Pyrolysis	Scenario 4 - Optimized Class A	Notes
	Social and Equity Category							
	Built & Natural Environment							
S1	Noise	2	5	5	2	3	2	S2, S3, S4 have more local noise generation due to the operation of offsite facilities. Off-site facilities assumed to be located in South Plant region (based on previous components of the severe.
S2	Odor	3	5	4	2	2	2	Compost, Soil Blending, Pyrolysis will generate some additional odor. More odor generated from soil-blending and composting. Pyrolysis has odors but a smaller footprint. Of a high ESJ opportunity and high SVI score, impacts to these communities would be more severe.
S 3	Traffic	2	5	4	2	3	2	S1 is mostly long haul trucking. S2 has more local trucking and less long haul. Limited long haul trucking in S3 but more local traffic. Off-site facilities assumed to be located score, impacts to these communities would be more severe.
S 4	Economic Development/Jobs	5	5	3	4	3	4	For Economic Development and Jobs: S2 and S4 would require the greatest amount of additional staff to operate and maintain facilities. S3 would require additional staff to Additionally, retail sales of compost and soil blended products would help to support the local economy via nurseries, landscapers, garden stores, and donations. Working Co potentially hazardous environments
S 5	Food Systems	3	5	3	4	2	4	Although S1 contributes the most to agriculture, it is located in Eastern Washington and used for mostly wheat, grains, and hops. S2 and S4 products will be largely sold loca intended for more niche applications such as cannabis production and less on agriculture. Blending into a product may make it more economic for agriculture use.
	Subtotal	15		10.8	9.2	7.8	9.2	
	Environmental Category							1
	Sustainability							
C1	Greenhouse Gas Emissions	10	5	5	4	1	5	S1 and S4 have the lowest GHG emissions and are less than 10% from each other. S2 is close to S1 and S4. S3 has significantly higher GHG emissions than any of the other
C2	Energy Production/Usage	5	5	5	3	2	4	Energy Production is the same across the scenarios due to no changes in the gas utilization strategy. Electricity was consumed in the order from high to low S2, S3, S4, S1
C3	Fossil Fuel Use	5	5	5	4	2	5	Fossil fuel usage was greatest in S3 with double the fossil fuel usage as S1 and S4. S2 is approximately 20% higher than S1. S1 and S4 are less than 5% of a difference. Re
C4	100% Beneficial Reuse Regulatory Compliance/Risk	5	5	3	5	2	5	S3 has the highest risk in not meeting 100% beneficial reuse due to the market uncertainty and putting 100% of product into one processing market/customer. There is no likely send to landfill. S3 also has a bit of uncertainty with WA DOE evaluating biosolids biochar on a case-by-case basis for beneficial reuse. S1 has the second lowest score reuse goals.
C5	Flexibility to Meet Future Regulations	5	5	2	4	5	3	Current research suggests that biological treatment such as MAD only degrade some contaminants of emerging concern (CEC). TAD has improvements over MAD for degrad Pyrolysis has been shown to significantly decrease a wide range of different types of CEC. Compost and soil blending can also decrease concentrations through dilution with
	Subtotal	30		25	24	13	27	
	Economic Category							
E1	Lifecycle Cost	10	5	4	2	2	3	S1 was given 4 because it still represents a high cost. S2 and S3 are almost double the cost and given a 2. S4 was given a 3 as it was 50% more of the cost. Refer to Section
E2	Total Project Capital Cost	5	5	5	1	1	3	S1 has lowest capital cost. S4 is two times the capital cost of S1. S2 and S3 is 4 times the capital cost of S1. Refer to Section 5 of the report or Appendix C
E3	Market Diversification/Risk	10	5	2	5	2	5	S2 and S4 have the most product and market diversity compared to S1 and S3. Less risk that comes with single market exposure. S3 has a potentially large market diversit risk due to unproven demand for product and single entity handling the biosolids. S1 has the least amount of market diversity but already large available market for product
	Subtotal	25		17	15	9	19	
	Technical Category							
T1	Process Reliability	10	5	5	4	2	5	S3 has the lowest process reliability given that only one pyrolysis system is in operation in the United States and few in the rest of the world. One THP-MAD facility in the Unit
T2	Constructability/Footprint	3	5	3	4	3	5	Constructability/footprint assessed at the treatment plant only. S4 has the least plant footprint requirement and most constructible design. S4 Less footprint than S2. S1 an additional digesters for S1 and S4.
тз	Site Permitting	2	5	5	3	2	3	Off-site permitting challenging for S2, S3, and S4. S3 air permitting challenging to acquire.
Т4	Addressing Solids Handling Capacity	5	5	3	5	3	5	S1 and S3 do not address capacity increases at WP. S2 and S4 provides significant digestion capacity increase at WP and SP
т5	Compatibility with Capital and Planning Projects	5	5	4	2	3	3	S1 has the lowest capital requirements and does not impact future nutrient programs. S2 has increased high capital and ammonia recycle. S3 has increased high capital re
т6	Operational Complexity	5	5	5	2	3	4	Additional processes would result in greater complexity. THP-MAD in S2 and thermal drying and pyrolysis in S3 are the most complex systems. S4 has soil blending and com
	Subtotal	30		25.8	20.6	15.6	26.2	
	<u>Total</u>	100		<u>78.6</u>	<u>68.8</u>	<u>45.4</u>	<u>81.4</u>	

posting study) which has a high ESJ opportunity and high SVI score, impacts to these communities would be Off-site facilities assumed to be located in South Plant region (based on previous composting study) which has ted in South Plant region (based on previous composting study) which has a high ESJ opportunity and high SVI

to operate offsite facility but less than S2 and S4. S1 would require the least amount of additional staff. Conditions would be the worst for S2 and S4 due to outdoor facility and odors. S3 would deal with odors and

cally for use in gardens and lawns which would likely see increase in local agriculture production. Biochar is

her scenarios Refer to Figure 4-1 in the report or Appendix B

Refer to Appendix B

no redundancy or flexibility through this P3. If the facility fails or BFT can't sell their product, biosolids would re due to limited market diversity and single product. S2 and S4 are more resilient in meeting 100% beneficial

radation of some addition CECE. Composting and THP have been shown to decrease a larger group of CEC while ith clean feedstocks .

ion 5 of the report or Appendix C

sity due to uses in non traditional biosolids applications such as industrial and commercial uses but greater ct

ited States but there are more than 30+ facilities in the world with THP-MAD from Cambi

and S3 requires additional digesters which would consume more plant footprint. Constructability issues for

requirements. S4 has increased ammonia recycle (S4) but lower capital than (S2, S3)

mposting process and TAD which increases system complexity compared to S1

Social and Equity Category

The social and equity criteria category factors how each scenario can increase or decrease the quality of life of King County residents, taking into account the differing baselines for the communities around South, West Point, and Brightwater Treatment Plants.

The Center for Disease Control has developed a Social Vulnerability Index (SVI) as an indicator of how resilience communities are to external stresses on human health caused by natural or humancaused disaster, or disease pandemic. The rating is from 0 to 1, with 1 being completely vulnerable and unable to handle external stresses and 0 being very resilient. SVI can be directly correlated to the community's socioeconomic, racial, and language diversity statuses. Less affluent and more diverse communities are often closer to a value of 1. Equity opportunities exist in communities with high diversity and low socioeconomic status. SVI is a tool that King County has used to identify those opportunities for improvement. The table below summarizes the SVI values for the communities around King County's treatment plants.

	West Point	South Plant	Brightwater
Community by Plant (Overall SVI)	0.04	0.69-0.92	0.18
Service Area Average	0.33	-	0.33
County Average SVI		0.36	

Based on this information, the communities surrounding South Plant have more vulnerabilities to external stresses due to greater diversity and low socioeconomic environment. This would indicate that the impacts of projects to the community would be more severe. Therefore for this study, impacts to the community in the South Plant area was scored lower than impacts in other areas.

Built & Natural Environment (Ordinance Definition: Healthy built and natural environments for all people that include mixes of land use that support: jobs, housing, amenities and services; trees and forest canopy; clean air, water, soil and sediment)

Noise (2) – increases in noise is a generally a result of the use of heavy machinery as well as the addition of processes outside the current boundaries of the treatment plants

Traffic (2) – Greater volumes of biosolids will require additional trucking and hauling. These additional vehicles can impact local and regional traffic

Odor/Air Quality (3) – Odor, dust, fumes, and smoke can create a nuisance to surrounding community

Economic Development/Jobs (5) The addition of treatment processes will require an increase in staff to operate and maintain the new facilities, which will create local jobs for the community. Additionally, consideration was given scenarios that were able to increase economic opportunities for farmers, nursery owners, contractors, or other businesses, which in turn could stimulate the local economy, and return benefits to the community through increased capital.

Working conditions for King County public works staff can be impacted based on indoor and outdoor facilities, system complexity, and hazardous and nuisance working conditions.

Food Systems (3)

- Includes information about increased or decreased opportunities for local (<100 miles) food production

Environmental Category

Sustainability

Greenhouse Gas Emissions (10) - King County has developed a Strategic Climate Action Plan with a goal to achieve carbon-neutral operations by 2025. Management of a biosolids program with a focus on energy recovery, low energy solutions, increase in carbon sinks, and the reduction in sources of greenhouse gas (GHG) emissions will aid King County in reaching these goals. A GHG inventory was used to track emissions from the scenarios and include fugitive emissions, carbon sequestration, fertilizer offsets, energy use, and material consumption.

Net Energy Use/Production (5) - The generation and use of renewable energy is one of the major goals of King County's Energy Plan. With a target to reduce normalized energy consumption by at least 10 percent by 2025 and energy neutrality in operations and purchasing by the same deadline, renewable energy production and the reduction in external power consumption is vital to meeting those targets.

Fossil Fuel Use (5) - The non-renewable and limited supply of fossil fuels in the world make its use unsustainable. To conserve energy for future generations, fossil fuel usage will be considered for each scenario. Increased fossil fuel usage will generate a lower rating for the scenario.

100% Beneficial Reuse Regulatory Compliance and Risk (5)

This criterion was intended to evaluate the risks of failing to meet 100% Beneficial reuse regulatory compliance from an environmental standpoint. This criterion is based on the assumption that Class B biosolids would have limited options other than landfill. Landfilling of biosolids has a significant environmental impact as result of GHG emissions several times larger than other sources of GHG emissions.

Flexibility to Meet Future Regulations (5)

Increasing concern over emerging contaminants has become a hot topic for biosolids management programs. As research and studies continue develop the understanding of the health and environmental risk of these compounds, future regulations may be a possible outcome. This criterion considers whether the selected scenarios have any potential to reduce these compounds. General research has suggested that biological processes are less capable of removal of CEC when compared to thermal and chemical based processes.

Economic Category

Lifecycle Cost (10)

Net present worth (NPW) lifecycle costs for capital cost and operations and maintenance (O&M) for each scenario was considered. This cost reflects a 20-year useful service life of each scenario and reflect the potential impacts of O&M to a project. Estimated O&M costs included annual salaries for King County staff to operate and maintain the proposed facilities, general equipment maintenance, energy and material costs, and other related costs.

Capital Cost (5)

Capital costs are the costs associated with the procurement of equipment and construction for each scenario. These costs reflect the upfront cost of the project. Capital cost and O&M can have different impacts on utilities based on available funds and funding sources.

Market Diversification and Risk (10)

Market diversification is indicative of a more sustainable biosolids management program as there is flexibility to shift to different markets when circumstances can reduce demand in others. Exposure to only a single market can put a program at risk. This situation has been seen around the country as a result of legal action, climate change, or negative media. When demand changes unexpectedly for a single market program, the only viable option tends to be landfilling which has financial implications. For this criterion, favorable ratings are given to scenarios that can generate a diversified biosolids program. This criterion considers the financial risk of low market diversification. Class A biosolids generally have more alternative avenues for end-users compared to Class B biosolids and will receive higher scores.

Technical Category

Process Reliability (10)

Process reliability refers to the resiliency of a technology or process. Proven and mature technologies have long track records, wide adoption, and comprehensive experience. These generally reflect a decrease in risk in the adaption and long-term use of a technology or process.

Constructability/Footprint (3)

The limitation of space and high cost of land can make it challenging to implement projects of large scale. This criterion is intended to take into consideration the challenges of construction and the required amount of footprint of each scenario.

Site Permitting (2)

Site permitting can be challenging due to a variety of different regulations including, stormwater, air, and site restrictions. This criterion is intended to consider the challenge of permitting on-site and off-site locations.

Solids Handling Capacity Impact (5)

King County has seen a drastic increase in population over the last two decades and is projected to continue to grow. As population grows, available capacity will decrease resulting in required improvements in solids handling capacity. Intensification processes can increase capacity without significant construction requirements. Scenarios will be rated based on their abilities to increase capacity.

Compatibility with Capital and Planning Projects (5)

This criterion is intended to evaluate the compatibility of the scenarios with future capital and planning projects. This can include impacting future processes/projects such as nitrogen removal.

Operational Complexity (5)

The addition of processes and technologies can increase the complexity of the plant making it more challenging to operate.

Combined Financial, Environmental, and Social Costs and Benefits

Triple Bottom Line (TBL)

The triple bottom line, an analysis method to account for environmental, economic, and social factors, and is commonly used in planning or feasibility studies to evaluate King County alternatives, options, and projects. This triple bottom line analysis was adapted from the <u>King County Biosolids Program</u> <u>Strategic Plan 2018-2037</u> completed in 2018. The triple bottom line analysis was modified to be more robust and to better align with King County priorities, through the addition of a technical category, consideration of market risk and continuation of 100 percent beneficial reuse, and expanded equity and social justice criteria. Four criteria categories were developed for this effort: social, environmental, economic, and technical. The criteria include King County priorities as well as the Biosolids Program's objectives, especially around risk reduction and resiliency.

Social and Equity Criteria Category

The social and equity criteria category considered how each scenario could increase or decrease the quality of life of King County residents, taking into account the differing baselines for the communities around South, West Point, and Brightwater Treatment Plants. The criteria were adapted from the County's <u>The Determinants of Equity Report</u>. Scenario One: Base-case Class B scored highest in this category because it did not require any additional construction in overburdened areas. The other two scenarios' scores were similar. However, Scenario Two: 100 Percent Class A is better able to support the production of healthy, local food and community education programs and opportunities.

Environmental Criteria Category

King County is dedicated to environmental stewardship and has adopted several initiatives to tackle climate change. As part of the 2015 Strategic Climate Action Plan, the County has committed to meeting countywide GHG emissions reduction targets of 50 percent by 2030 and 80 percent by 2050. Additionally, WTD has set a target goal of carbon-neutral operations by 2025. The environmental criteria category takes into consideration these goals and other environmental criteria. Scenario One: Base-case Class B and Scenario Two: 100 Percent Class A both scored well in this category. Scenario Three: Pyrolysis scored significantly lower due to high greenhouse gas emissions and high energy and fossil fuel use, as well as a higher risk of not 100 percent beneficially reusing biosolids, as required by Washington State Regulations.

Economic Criteria Category

The economic criteria category considers the capital and operation and maintenance costs of the scenarios, including transportation. This category also evaluates the long-term sustainability of the biosolids management program in terms of diversification of outlets for biosolids application and risks associated with the single option program. *Scenario Two: 100 Percent Class A* scored highest in this category, despite moderate capital costs due to high diversification of products and consequently lower risks. *Scenario 3: Pyrolysis* scored lowest in this category, due to lack of diversification, high capital costs, and uncertain market conditions for biochar.

Technical Criteria Category

Different technologies offer varying levels of operation, footprints, permitting requirements, and improvements to existing processes. This category considers the technical components of each scenario. *Scenario One: Base-case Class B* and *Scenario Two: 100 Percent Class A* both scored well in this category. Both scenarios use reliable processes and are operationally feasible. *Scenario Two: 100 Percent Class A*

scored well due to addressing solids handling capacity effectively and being relatively simple (if costly) to construct. *Scenario Three: Pyrolysis* scored lower due to lack of process reliability, potential difficulty in site permitting, and high operational complexity.

Triple Bottom Line Score Summary

The scores for the four criteria categories were combined for the total scores for each scenario. High weighted scores represent the best scenarios. Total scores were out of 100 points, with 80-100 representing "very high", 60-80 representing "high", 40-60 representing "medium", 20-40 representing low, and 0-20 representing "very low".

Triple bottom line total score was very high for *Scenario Two: 100 Percent Class A*, high for *Scenario One: Base-case Class B*, and medium for *Scenario Three: Pyrolysis*.

- Scenario Two: 100 Percent Class A had the highest overall score due to very high scores in greenhouse gas emissions, flexibility to meet future regulations, market diversification/risk and solids handling capacity. This scenario had high to very high scores in all other criterion except noise, odor, traffic and capital costs. Noise, odor, and traffic are equity impacts that would need to be considered and properly mitigated in siting of a facility.
- Scenario One: Base-case Class B had high to very high scores in all criterion except flexibility to meet future regulations and market diversification/risk, a highly weighted criterion.

Scenario Three: Pyrolysis scored low to medium in each individual criteria category. Lower scoring criterion for pyrolysis included greenhouse gas emissions, energy use, regulatory compliance and beneficial use, capital cost, market risk/diversification, process reliability, and permitting.

Certificate Of Completion

Envelope Id: E20FD4A9EFDD4FFFB2F5F17D142CD84D Subject: Please DocuSign: Motion 15694.docx, Motion 15694 Attachment A.pdf Source Envelope: Document Pages: 2 Signatures: 2 Supplemental Document Pages: 154 Initials: 0 Certificate Pages: 2 AutoNav: Enabled EnvelopeId Stamping: Enabled Time Zone: (UTC-08:00) Pacific Time (US & Canada)

Record Tracking

Status: Original 10/28/2020 10:31:17 AM Security Appliance Status: Connected Storage Appliance Status: Connected

Signer Events

Claudia Balducci claudia.balducci@kingcounty.gov King County General (ITD) Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure: Not Offered via DocuSign Supplemental Documents:

Melani Pedroza melani.pedroza@kingcounty.gov Clerk of the Council King County Council Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure: Not Offered via DocuSign Supplemental Documents: Holder: Angel Allende Angel.Allende@kingcounty.gov Pool: FedRamp Pool: King County General (ITD)

Signature

— DocuSigned by: Uaudia Balducci — 7E1C273CE9994B6

Signature Adoption: Pre-selected Style Using IP Address: 198.49.222.20

Motion 15694 Attachment A.pdf

Melani Ledroga 8DE1BB375AD3422

Signature Adoption: Uploaded Signature Image Using IP Address: 198.49.222.20

Motion 15694 Attachment A.pdf

Status: Completed

Envelope Originator: Angel Allende

401 5th Ave Suite 100 Seattle, WA 98104 Angel.Allende@kingcounty.gov IP Address: 198.49.222.20

Location: DocuSign

Location: DocuSign

Timestamp

Sent: 10/28/2020 10:32:06 AM Resent: 10/28/2020 10:32:24 AM Viewed: 10/30/2020 1:30:49 PM Signed: 10/30/2020 1:31:12 PM

Viewed: 10/30/2020 1:30:55 PM Read: Not Required Accepted: Not Required

Sent: 10/30/2020 1:31:19 PM Viewed: 10/30/2020 1:36:05 PM Signed: 10/30/2020 1:36:22 PM

Viewed: 10/30/2020 1:36:09 PM Read: Not Required Accepted: Not Required

In Person Signer Events	Signature	Timestamp
Editor Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp

Carbon Copy Events	Status	Timestamp
Witness Events	Signature	Timestamp
Notary Events	Signature	Timestamp
Envelope Summary Events	Status	Timestamps
Linvelope Summary Events	Status	Timestamps
Envelope Sent	Hashed/Encrypted	10/28/2020 10:32:06 AM
· ·		•
Envelope Sent	Hashed/Encrypted	10/28/2020 10:32:06 AM
Envelope Sent Certified Delivered	Hashed/Encrypted Security Checked	10/28/2020 10:32:06 AM 10/30/2020 1:36:05 PM